
Oracle Transall

Oracle Transall User ’s
Guide
version 12.1

Part number: E14969-01

December-2012

Start

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may
not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part,
in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this
software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-
party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related notices. For information
on third party notices and the software and related documentation in connection with which they need to be included, please
contact the attorney from the Development and Strategic Initiatives Legal Group that supports the development team for the
Oracle offering. Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be considered in your capacity
as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle.
Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Software License and
Service Agreement, which has been executed and with which you agree to comply. This document and information contained
herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle.
This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its
subsidiaries or affiliates.

2

CONTENTS

Chapter 1: System Requirements

1 Windows (32-bit)

1 MVS

2 AIX (32-bit)

2 IBM System z Linux (64-bit)

3 Linux (32-bit)

3 Sun Solaris (32-bit)

Chapter 2: Installing Transall

5 Installation
5 Installing Transall (PC)
10 Installing Transall (UNIX)

10 Setting Up the Environment
11 Running the Installation Script
13 Installing Transall (MVS)

14 Step 1: The Bootstrap Job
15 Step 2: The TAPEREAD Job

Chapter 3: Transall Overview

17 Transall Applications
19 What can Transall do for Me Technically
20 Characteristics of a Transall Application
20 Handling Technologies

20 Integrating Applications via ActiveX Automation
21 Integrating Access to Data via ODBC and JDBC
21 Supporting Win32 Platforms

21 Components of a Transall Application
22 Sources, Destinations, and Maps

Contents

3

24 Tables and Sets in the Transall Database
25 Logic Trees
25 Transall Scripts and Script Modules
26 The Transall Product Package

27 About the Transall Editor

Chapter 4: Interacting with Transall Editor

29 Transall Projects
30 Creating a Project
30 Naming a Project

31 Default Project Components
31 Menu Bar and Toolbars
31 Control Bars and Workspace Area
32 Component Explorer Control Bar

32 Opening a Component from the Component Explorer Control
Bar

34 Component Inspector Control Bar
34 Editing Component Properties
35 Opening Source Code for a Component's Built-In Methods

37 Revealing and Hiding Control Bars
37 Rearranging Control Bars and Toolbars
39 Workspace Area
39 Other Bars and Child Windows
40 Global Renaming of Components and Subcomponents
40 Transall Project Sharing
41 Transall Project Command-Line Compilation

Chapter 5: Transall Editor Menu Options

43 Additional Menus

44 File Menu
45 New
45 Open

Contents

4

46 Close
46 Save
47 Save As
48 Share
49 Make project.tex
49 Exit

50 Edit Menu
50 Undo
50 Redo
50 Cut
51 Copy
51 Paste
52 Delete
52 Select All
52 Find
53 Replace
54 Find in Project
57 Replace in Project

58 View Menu
58 Component Explorer
59 Component Inspector
61 Output Bar
62 Logic Bar
63 Resource Bar
64 SQL Bar
64 Debug
66 Breakpoints
66 Toolbars

69 Project Menu
69 Add Source
70 Add Destination

Contents

5

71 Add Map
72 Add Logic Tree
74 Add Script Module
75 Wizards

75 XML to Docuflex
77 Flat File Wizard
78 Import Table Layout
81 VRF to XML Plus

83 Synchronize
83 Data Sources
83 Links
84 View Links
85 View Queries
86 DMG Report

87 Compile
87 Next Error
87 Previous Error
87 Project Settings

89 Debug Menu
89 Go
89 Stop Debugging
90 Break
90 Step Into
90 Step Over
91 Run to Cursor
91 Toggle Breakpoint
91 Clear All Breakpoints
92 External Runtime Error

93 Tools Menu
93 Options

93 Using the Options Dialog and Views
94 Using the Editor Tab
95 Using the Formats Tab

Contents

6

96 Using the Separators Tab
97 Using the Documanage Tab

98 Window Menu
98 New Window
99 Close
99 Close All
99 Cascade
99 Tile
99 Arrange Icons

100 Help Menu
100 Help
100 About Transall Editor

Chapter 6: Working with Sources and Destinations

101 About Sources and Destinations
101 New Export Capabilities
102 Enhanced Read Flexibility
102 File-Based Sources and Destinations
103 ODBC-Compliant Sources and Destinations

103 Details on Files
103 About Record Subcomponents
104 Defining a Record’s Identifier Field
105 Data Types
105 Using Format Options
106 Using Separator Options

106 Creating Sources and Destinations
110 Describing a Fixed File Source

110 Adding a Record Subcomponent
111 Changing the Name of a Record Subcomponent
111 Copying Field Descriptions Into an Empty Record

Subcomponent
111 Deleting a Record Subcomponent

112 Describing a Delimited File Source

Contents

7

112 Describing a COBOL File Source
115 Describing a PPS File Source

116 Reference for Component Properties - Traditional Files
116 Source Properties

116 Fixed File
120 Delimited File
124 COBOL File
128 PPS File

129 Destination Properties
129 Fixed File
133 Delimited File
137 COBOL File
140 Documaker File - Variable Replacement File (VRF)

142 Reference for Component Properties - SQL
142 Reference for Component Properties - ODBC
142 Source Properties

143 ODBC Data Source
144 Destination Properties

144 ODBC Data Source
145 Describing an ODBC-Based Source

146 Create the Source Component
146 Define a Query

147 Query Properties
149 Identify One or More Tables for the Query
150 Selecting Table Columns
152 Defining Join Criteria for the Query
154 Defining Filter Criteria
155 Define Sort Criteria

159 Describing an ODBC-Based Destination
160 Query Properties

161 Details on SQL
161 SQL Bind Variables
161 Processing SQL statements on non-WIN32 platforms

162 Details for Accessing Databases from UNIX via SQL

Contents

8

162 Process Overview
162 Creating DSN Files for UNIX
165 Linux ODBC Support
166 Creating DSN Files for the PC
167 Building the Transall Executable
167 Transferring the Transall Executable to UNIX

167 Details for Accessing Databases via JDBC
170 Mapping of ODBC Data Source Column Data types to Transall

Record Field Data Types

Chapter 7: Docuflex Destination

171 Overview
171 Setting up a Docuflex File Destination
173 How Data Moves Through a Docuflex File Destination
174 Defining a DataSet Identifier
174 Using a Docuflex Destination as a Data Source

Chapter 8: FP Plus Destination

179 Overview
179 FP Plus Built In Features
180 How FP Plus Works
181 FpPlus Business Logic
183 FpPlus Data Destination Details

183 Documaker FP Plus Data Destination Properties
186 Documaker FP Plus Data Destination Record Properties

187 Examples

Chapter 9: Scripted Data Sources and Destinations

203 Overview

203 Scripted Assistant
206 Scripted Sources and Destinations Operations (Events)
206 Scripted Source and Destination Properties

Contents

9

Chapter 10: XML Plus Data Source

207 Overview

207 XML Plus Features
209 Adding Records and Fields
210 Element IdentifierValue Properties
211 Field Usage
212 Transaction Boundaries
212 XML Plus and the LogicTree
213 XML Plus Source vs. XML Source

214 XML Plus Source Component Property Details
214 XML Plus Source
216 XML Plus Source Record
216 XML Plus Source Record Field

Chapter 11: Event-based XML Data Source

219 Overview of Event-based XML Support

219 How Event-based XML Parsing works in Transall
219 Setting up an Event-based XML Source
224 Adding a Record for an XML Data Source

Chapter 12: XML Data Destinations

231 Setting up an XML Destination
234 Adding a Records to an XML Data Destination

Chapter 13: Using Unicode

239 Transall and Unicode
241 Data Sources and Destinations
241 ASCII, EBCDIC and Unicode
242 Editing Configuration Files with Unicode

Contents

10

Chapter 14: Transall Java Scripting Support

243 Overview
243 Java support script syntax overview

244 Example Script Calling a Java Application
244 Java data types vs. Transall data types
246 Java Object Data Types
247 Running Java Class Applications
248 Running Java Applications Located in JAR Files
248 Get and set Java Object Field Values
249 Transall Java Support Syntax Details

Chapter 15: Working with Maps

251 Overview

251 Maps and Records
253 Multiple Maps for the Same Destination
254 Creating a Map
255 Interacting with the Map Assistant

257 Using the Resource Control Bar
258 Interacting with the Expression Builder Dialog

259 Enhanced Expression Builder
260 Performing a Map

Chapter 16: Working with the Transall Database

261 Overview

261 Tables
262 Operations on Tables

262 Resource Considerations for Tables
262 Adding a Table

262 Adding Columns to a Standard Table

263 Sets
264 Adding a Set

264 How a Set Establishes Relations between Rows

Contents

11

266 Rows Become Related as They Are Inserted
267 Walking the Related Parent and Child Rows in a Set

267 Reference for Component Properties
267 Table Properties
267 Set Properties

Chapter 17: Working with Logic Trees

269 Overview

270 How a Logic Tree Works
271 Adding a Logic Tree
272 Adding an Instruction
273 Deleting an Instruction
273 Cloning an Instruction
273 Reordering Instructions
274 Enabling and Disabling Instructions

274 Logic Tree Instructions
274 Standard Instructions
275 Condition Instruction
276 ControlBreak Instruction
277 DoWhile Instruction
278 Execute Instruction
278 Input Instruction
278 Map Instruction
279 Output Instruction
279 Walk Instruction
280 Testing in the LogicTree

281 Documaker fp Instructions

281 Starting Application Execution in a Logic Tree

282 Setting Up Control-Break Processing

283 Example of Identifier Field Control-Break Processing

284 Example of Break Fields Control-Break Processing

Contents

12

286 Using Variables in Logic Tree Instructions

Chapter 18: Debugging and Deploying Transall Applications

287 Overview

287 Compiling Versus Building

288 Files Produced when Compiling a Transall Application

288 Using Source Control with Transall Files

288 Editing Build Settings
289 Using the Project Settings Dialog and Tabs

290 Using the General Tab
291 Using the Compile Tab
294 Using the Register Tab
295 Using the Debug Tab
299 Specifying Offline Debugging
301 Using the Locale Tab

303 Running a Transall Application in Debug Mode
303 Compile Settings for Producing a Debug Version
304 Breakpoints in Transall
305 Operating Transall under Debugging Control
306 Viewing Debug Variables in the Variables and Watch Bars
308 Changing Display Scope for Variables

308 Building a Transall Application for Release

308 Deploying Transall Applications
309 Windows Command Line
309 Batch (*.BAT) files
310 ActiveX Automation
312 DLL Application Programming Interface (API)
314 IDS Interface
317 Windows Service

319 Writing to the System Events Logs from a Transall Application
Running as a Service

Contents

13

Chapter 19: Working with Transall Scripts and Script Modules

321 Overview

322 Creating a Script Module
323 Coding the Declarations Section

324 Adding a Script
326 Editing a Script’s Source Code
327 Viewing the List of Scripts in a Script Module

328 Built-In Component Methods

Chapter 20: Project Sharing

333 Overview
333 Project Sharing Details

Chapter 21: Managing Transall Applications

337 Transall How To’s:
337 Creating a Transall Project
340 Open an Existing Transall Project
342 Adjusting Control Bars and Windows
344 Setting Up an SQL Data Source or Destination (ODBC

connection)
349 Adding an SQL Query (Statement) to an SQL Data Source or

Destination
355 Have One SQL Statement Reference the Results of Another

356 Setting Up a Delimited File Data Source
362 Why There Are Multiple Records for Some File Data Sources

or Destinations
362 Adding a Record Type to a Delimited File Data Source or

Destination

Chapter 22: Transall Threaded Data Manager

369 Introduction

369 Components

Contents

14

371 Examples

373 Connecting Transall and Docuflex to the TDM
373 Advanced Example of Data Gathering and Document

Composition
375 Sample Batch Command Script
376 Named Jobs in the TDM
376 Command-Line Reference

376 TRANDMAN
377 TDMWAIT
377 TDMJOBS
378 TDMTERM
378 Transall
378 Docuflex

379 Starting the TDM Server in Authentication Mode
379 TRANDMAN
380 TDMTERM
380 Transall
381 Docuflex

382 Setting up Transall Projects to use the TDM

Chapter 23: Transall Gateway

385 Overview

387 Transall Interface

389 Accessing Files Through a Transall Gateway with Tranexe

390 Running the Gateway Server

391 Stopping the Gateway Server

Appendix A: Statement Syntax

440 Conditional Syntax
441 Like Conditional Operator Syntax

441 Syntax
441 Remarks

Contents

15

442 Other rules for pattern matching

443 Expression Syntax

445 Formatting Syntax
449 Format Functions

451 Sending SMTP Email Messages
453 SMTP Email Functions

459 Recap Log File

460 Limitations

460 EC Regulation 1103/97

461 – Index

1

Chapter 1- System Requirement

System Requirements

WINDOWS (32-BIT)
The minimum hardware requirements to install and operate Transall are:

• Processor: Intel-compatible; 512 MHz or faster Pentium III or better processor
required, or equivalent

• Memory: 512 MB available RAM or more recommended

• Harddisk: 12 MB of available hard disk space required for installation (hard disk
usage will vary based on configuration)

• Monitor: recommend 19" monitor or better at 1280 x 1024 resolution or better
for viewing and working with documents in workstation software

The minimum software requirements to install and operate Transall are:

• Windows 2000 Professional (NT5), XP Professional, or Windows 2003
Workstation (the latest service packs for each operating system are highly
recommended)

• Database support requires Microsoft ODBC Level 2 drivers (Level 3 drivers
recommended)

• Oracle Common Objects 11.2 (required for some sources and destinations)

AIX (32-BIT)
The minimum hardware requirements to install and operate Transall are:

• Processor: POWER 4 or later processors; 1.2 GHz or faster processor required

• Memory: 512 MB available RAM or more recommended

• Harddisk: 40 MB of available hard disk space required for installation (hard disk
usage will vary based on configuration)

The minimum software requirements to install and operate Transall are:

• AIX 5.2 and 5.3 (32-bit mode only); the latest service packs for each operating
system are highly recommended

• Databases supported:

Chapter 1 – System Requirements

2

• Oracle 8 and later supported via 32-bit Oracle 8 driver

• Sybase 12.5

IBM SYSTEM Z LINUX (64-BIT)
The minimum hardware requirements to install and operate Transall are:

• Processor: IBM s390x

• Memory: 512 MB available RAM or more recommended

• Hard disk: 90 MB of available hard disk space required for installation.

The minimum software requirement to install and operate Transall is:

• Kernel 2.6.16 or later

• Databases supported:

• Oracle databases with supported ODBC or JDBC driver

• MySQL version 5.1.51 with supported ODBC or JDBC driver

Linux (32-bit)

3

LINUX (32-BIT)
The minimum hardware requirements to install and operate Transall are:

• Processor: Intel-compatible only; 1 GHz or faster Pentium Pro or better
processor required

• Memory: 512 MB available RAM or more recommended

• Harddisk: 40 MB of available hard disk space required for installation (hard disk
usage will vary based on configuration)

The minimum software requirements to install and operate Transall are:

• Kernel 2.4.9 or later; formal Linux distribution is desirable (e.g., Red Hat
Enterprise Linux or Novell SuSE Linux Enterprise Server); all current fixes are
required for each kernel release.

• Databases supported:

• Oracle 9 and later supported via Oracle 9 driver

• Linux 2.4.9 or later with the following libraries:

• libdl.so.2

• libstdc++-libc6.2-2.so.3

• libm.so.6

• libc.so.6

• /lib/ld-linux.so.2

• libpthread.so.0

• libns1.so.1

SUN SOLARIS (32-BIT)
The minimum hardware requirements to install and operate Transall are:

• Processor: UltraSPARC IIIi processors or later; 1.06 GHz or faster processor
required

• Memory: 512 MB available RAM or more recommended

• Harddisk: 40 MB of available hard disk space required for installation (hard disk
usage will vary based on configuration)

The minimum software requirement to install and operate Transall is:

• Sun Solaris 8 and 9 (5.8 and 5.9)

• Databases supported:

• Oracle 9 and later supported via Oracle 9 driver

• MySQL version 4.0 and later using MyODBC

Chapter 1 – System Requirements

4

5

Chapter 2- Installing Transall

Installing Transall

INSTALLATION
Transall operates on WIN32 and UNIX platforms. Because of the differences in
platforms, this guide provides separate installation routines.

INSTALLING TRANSALL (PC)
The following installation procedure assumes that you have no other active
applications running on your computer. Transall is installed via a Graphical User
Interface (GUI) routine.

To Install Transall (PC)
1. Insert the Transall Installation CD in the appropriate drive.

2. Select Start>Run and Windows displays the Run dialog box.

Figure 1: Run Dialog Box

3. Type D:\SETUP.EXE in the Open text box and click OK or Browse to locate
the program. If the installation CD is in a drive other than D:, enter the
appropriate letter specification.

To Install Transall on See this:

WIN32 Installing Transall (PC) on page 5

UNIX Installing Transall (UNIX) on page 10

Chapter 2 – Installing Transall

6

The installation routine displays a dialog box indicating the InstallShield
Wizard’s progress, followed by the Transall Welcome screen.

Figure 2: Welcome Screen

4. Click Next> to continue with the installation or Cancel to quit the program.

The routine then displays the Customer Information dialog box, prompting you
for your name and the name of the company for whom you work.

Figure 3: Customer Information Screen

5. Click Next> to continue with the installation if you haven’t already done so.
You can also choose <Back to return to the previous screen or Cancel to abort
the routine.

Installation

7

The routine then displays the Choose Destination Location dialog box,
prompting you for the folder name/directory path into which you want to install
the program

Figure 4: Choose Destination Location Screen

6. Perform one of the following procedures:

Accept the default path the
installation routine proposes

Click Next>.

Enter another path for the
installation

Click Browse, select a new path, and then choose Next>.
Note: The Destination Folder lists the last location to which the
program was installed. If you’re re-installing the program to a
different location, you should Cancel the routine, un-install the
program from its previous location, and then install the program
to the desired location.

7. Click Next> to continue with the installation if you haven’t already done so.
You can also choose <Back to return to the previous screen or Cancel to abort
the routine.

To Perform this action:

Chapter 2 – Installing Transall

8

The Setup Type dialog box displays asking which setup type to install.

Figure 5: Select Setup Type

8. Choose the Setup you prefer, then choose Next> to continue with the
installation. You can also choose <Back to return to the previous screen or
Cancel to abort the routine.

The Select Program Folder dialog box displays the folder where you’ll store the
program files.

Figure 6: Select a Program Folder

9. Perform one of the following procedures:

To Perform this action
Accept the default program folder the
installation routine proposes

Click Next>.

Installation

9

10. Click Next> to continue with the installation if you haven’t already done so.
You can also click <Back to return to the previous screen or Cancel to abort
the routine.

A dialog box indicating the setup program’s progress displays until all the files
have been copied to your PC.

Figure 7: Follow the Installation’s Progress

When the installation is 100% complete, the program displays the Transall Setup
Complete dialog box.

Figure 8: Restart you Machine

Select an existing folder for the
installation

Use the scroll bar to click on an existing folder; then click
Next>.

To Perform this action

Chapter 2 – Installing Transall

10

11. Click Finish to complete the installation program and reboot your workstation

INSTALLING TRANSALL (UNIX)
• Copy the appropriate files from the installation disc to a directory to which all

users of the product have access:

Note If you want to install the product into the /home/oracle/transall directory, first create
the directory and then copy the files into it. You should perform this operation with
root authority so that file permissions can be set for users and groups, but using root
authority isn’t absolutely necessary.

SETTING UP THE ENVIRONMENT
Setting up Transall on UNIX is a multiple-step process involving

• setting up access permissions for directories and users (see To Set Up
Permissions on page 10)

• running the installation script (see To Run the Installation Script on page 11)

• verifying the environment variables (see To Verify the Environment on page 13)

To Set Up Permissions
1. Ensure that you’re logged on with the proper authority for the directory and

installation files. You might need to assign user and group permissions.

a. Verify that the directory in which you’re about to run the setup script has
write permission. If the permission isn’t set correctly, do so now.

If user jxsmith created the /home/oracle/transall directory, use that ID to run the setup script. Verify
that /home/oracle/transall has write permission using the “ls” command:

ls -ald /home/oracle/transall
You should see the following results:
drwxr-xr-x 2 jxsmith staff 512 Apr 19 07:52 /home/oracle/transall

The most important part of this message is the third letter of the string
“drwxr-xr-x”. The “w” indicates that the owner of this directory has write permission. If the third letter isn’t
a “w”, assign write permission with the following command:

chmod 755 /home/oracle/transall

If you’re on this platform: Copy these files:
IBM AIX setuptm12.01.aix

Linux setuptm12.01.lnx

Sun setuptm12.01.snx

IBM System z Linux setuptm12.01.zlnx

Example

Setting Up the Environment

11

b. Make sure you’re in the directory containing the installation files:
cd /home/oracle/transall

c. Change the file permission for the installation file.

• the files should have read permission (read/write for the user, if desired):

chmod 644 setuptm12.01.aix (or .lnx, or .snx or
.zlnx)

2. Adjust the file permission of the installed files for the various users and groups
needing access.

RUNNING THE INSTALLATION SCRIPT
The Transall 12.1 installations on the Unix platforms (AIX, Linux, Sun, zLinux)
have been enhanced to use the Unix uuencoded text encoding method instead of the
tar files, which will no longer be provided. The new uuencoded files are text-based
files instead of binary tar files. This should make the transmission and distribution
of these installation files easier and more portable to different machines in your
network.
You can perform either a new installation or update an existing one. The installation
process detects whether you are updating an existing installation when you enter the
directory name of the target or destination of the installation. If the directory does
not exist, then a new install is performed.
If the directory already exists and “tranexe” is found in the existing directory, then
an update to an existing installation is performed. Both these conditions must be true.
The installation update process will ask if you first want to “back up” the existing
installation. If you choose “back up”, all the existing files in the target directory will
be copied to a subdirectory called “backup”. Since this is an installation update, only
the new binary files will be copied/installed to your target/destination directory,
preserving any existing data files you may already have in that directory (e.g., .ini
files and .dde files).

To Run the Installation Script

• Run the installation script you want to install.

The naming convention for these scripts is as follows:

setuptrnvv.rr.sss

where:

IBM’s AIX

Linux

Sun

IBM’s System z Linux

vv the version number

rr the revision number

sss the Unix platform system

aix
lnx
snx
zlnx

Chapter 2 – Installing Transall

12

Therefore, if you were installing Transall 12.1 on the Linux operating system,
the script name will be “setuptm12.01.lnx”.

Following is an example of running the Transall installation on the Linux
operating system and its display and response. In this example, we will install
Transall all into the same directory named “transall12.n”.

Note The script will automatically invoke the Transall installation scripts. You can choose to
install or bypass the installation of any one of these components.

$ setuptrn12.01.lnx

* * * Transall 12.01 Installation/Update * * *

Loading, Please Wait ...

Do you want to Install Transall 12.01?

Enter 'Y'es or 'N'o, or 'X' to cancel this process.

?>y

Please select an Installation/Update Directory:

Press <Enter> to accept default: </home/jxsmith/trn12.01>

?>transall12.n

Install Transall 12.01 to <transall12.n>?

{y or n}?>y

Installation/Update in progress. Please wait...

Updated Base Components ...

...

Transall Installation Complete.

<= Enter the directory name where you want to install.

This is a qualified or non-qualified directory name.

In this

example, a sub-directory named “transall12.n” will be

created in the current directory.

In the following example, we will update an existing Transall installation on the
Linux operating system. We already have Transall installed into the same
directory named “transall12.n”.

$ setuptrn12.01.lnx

* * * Transall 12.01 Installation/Update * * *

Loading, Please Wait ...

Do you want to Install Transall 12.01?

Enter 'Y'es or 'N'o, or 'X' to cancel this process.

?>y

Please select an Installation/Update Directory:

Press <Enter> to accept default: </home/jxsmith/trn12.01>

?>transall12.n

Please select a update type

1 = Backup and Update Installation

2 = Update Installation

3 = Quit ?>1

Update Transall 12.01 to <transall12.n>?
{y or n}?>y

Installation/Update in progress. Please wait...

Updated Base Components ...

Transall Installation Complete.

<= Enter the directory name where you want to install.

In this example, the directory name already exists

and thiswill cause the installation process to update

the existing installation.

<= Choose 1 to first back up your existing

installation files to a sub-directory named “backup”,

then the new modules will be installed.

Setting Up the Environment

13

To Verify the Environment

1. All Transall users must add the library directory to their LD_LIBRARY_PATH
environment variable. Edit the login profile and modify the environment
variable so that the operating system can find the shared object (.so) files that
Transall uses.

LP=/home/oracle/transall
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$LP
export LD_LIBRARY_PATH

2. Be sure to refresh the LD_LIBRARY_PATH environment variable by executing
the login profile before trying to use Transall (e.g., first logout and then log back
in). To verify that the environment variable has been updated correctly, type:
echo $LD_LIBRARY_PATH

you should see something similar to the following:

/usr/lib:/usr/bin/lib:/home/oracle/transall

3. All Transall users must also add the executables directory to their PATH
environment variable.

If tranexe is in /home/oracle/transall, update the PATH with the following script fragment in the user's
profile:
XA=/home/oracle/transall:
if [[“$XA” != “$PATH”]]
then
 PATH=XAPATH
 export PATH
fi

The syntax of the script fragment may vary depending on the shell you’re using.

Note In the following two steps, LD_LIBRARY_PATH is the name of the environment variable
on Linux and Sun, while the name is LIBPATH on AIX.

Example

Chapter 2 – Installing Transall

14

15

Chapter 3- Transall Overview

Transall Overview
This chapter introduces the purpose of the Transall™ product, describes Transall’s
enabling technologies, introduces the Transall Application and its major
components, and identifies the tools that are included in the Transall product
package.

TRANSALL APPLICATIONS
Transall is an Extract Translate Load (ETL) tool for creating software objects, called
Transall Applications, that allow the information found in dissimilar systems to
work together in a new application. A Transall Application does this by establishing
new paths for data between existing systems and by performing flexible, record-
oriented operations across those data paths.
A Transall Application can create a single stream of data records from a database to
a desktop application. Or it can create several streams—from each of several files,
databases, or data producing applications—that have the same desktop application
as the destination.

Transall Application

Sources
Maps

Logic TreeDestinations

Input Data Records
Actual Data
Sources

A
B

C
D

E
F

G
H

I
J

K
L

A
E

I

B F J
C G K

D H L

Actual Data
DestinationsOutput Data Records

File

Database

Database

ODBC

ODBC

ODBC
Database

Application
ODBC

Local or Network

LAN or WAN

Intranet or
Internet

Chapter 3 – Transall Overview

16

Figure 9: Transall Applications Establishes Data Paths Between Applications

163 summarizes the kinds of data paths that a Transall Application can establish. As
shown, one Transall Application can obtain input data records from more than one
data source and provide output data records to more than one data destination.
Sources and destinations can be files including XML, databases accessed via
Microsoft's Open Database Connectivity (ODBC), and applications accessed via
ODBC.

Transall Applications

17

The top of the diagram shows three streams of input data records that a sample
Transall Application might obtain. The three streams originate from a database, a
file, and a data-producing ODBC-enabled application, respectively. The center of
the diagram depicts the components in a Transall Application that construct output
data records from input data records. The bottom of the diagram shows two streams
of output data records being directed to a database and a data-consuming ODBC-
enabled application.
For example, a Transall Application can provide record-oriented data to an Excel
spreadsheet running on your desktop by obtaining data records from local or network
files or from an ODBC-enabled database that your workstation can access across
your organization’s local-area network (LAN), wide-area network (WAN),
enterprise-wide Intranet, or the Internet.
The figure also shows that:

• The Transall Application can create one stream of output data records from
multiple streams of input data records.

• The Transall Application can create one output data record using data from
multiple input data records that originate in different data sources.

WHAT CAN TRANSALL DO FOR ME TECHNICALLY
Transall can copy data from one point to another while translating and reorganizing
the data. The tool organizes the process of translating and reorganizing data in to five
reusable components. These are:

1. Sources

2. Destinations

3. Maps

4. Logic trees

5. Scripts

By organizing all Transall applications into these five consistent components,
Transall reduces errors and improves the ease of on-going maintenance. Transall
data traditionally consists of files or Microsoft's Open Database Connectivity
(ODBC) data stores but non-traditional data can also be processed. Files can contain
records that are either delimited or undelimited, with one or many record definitions
per file. Files can also be in Extended Binary-Coded Decimal Interchange Code
(EBCDIC) or American Standard Code for Information Interchange (ASCII) with
binary values that are organized as Big Endian or Little Endian (byte order
conventions).
Transall can import Common Business Oriented Language (COBOL) copybooks
that define a file's records and COBOL data types such as COMP, COMP-1, COMP-
2, COMP-3 and redefines are natively supported. Transall can also read and write to
ODBC data stores that are ODBC level 2 or higher. This includes SQL Server,
ORACLE, Database 2 (DB2), DB2/400, Sybase, SQL Base, Access, Excel, and
many more. Transall can process both files and ODBC data stores at the same time
moving information freely between files and ODBC.

Chapter 3 – Transall Overview

18

Transall applications can execute on Windows 32-bit (WIN32), Advanced
Interactive Executive (AIX) 4.x, and Linux platforms. On the WIN32 platform
Transall applications can also execute as COM servers that are available to any
ActiveX enabled application such as Microsoft Visual Basic, Microsoft Office
Products, Active Server Pages (ASP) Web pages, and many other software
applications. Transall can also process SQL statements on non-WIN32 platforms.
This enhances Transall’s portability to the supported non-WIN32 platforms: AIX,
Solaris, and Linux (Intel).

CHARACTERISTICS OF A TRANSALL APPLICATION
A Transall Application is executable software that runs in an environment provided
by the Transall product’s Transall Host run time library. A Transall Application can
run anywhere the Transall Host run time library is installed. Transall can run on your
personal computer or workstation or on a shared resource, such as a departmental
server.
For example, you can incorporate a Transall Application into an existing three-tiered
application environment though Transall’s support for ActiveX and COM. That is, a
Transall Application and the calling application can each run on different client
workstations, or the Transall Application might run on a server node that can be
accessed by one or more client workstations, or both the Transall Application and
itscalling application can reside on a server node. Your choices for deploying a given
Transall Application depend upon whether the calling application is itself only an
ActiveX client or also a server application to its own client applications.
A Transall Application user typically does not interact directly with the Transall
Application while it runs. Rather, as illustrated in Figure 9 on page 16, the Transall
Application behaves as a “glue” application. Without being visible to the user, the
Transall Application allows data to pass between other existing systems and
manipulates that data along the way if necessary.

HANDLING TECHNOLOGIES
The Transall Application can serve its purpose as “glue” between other systems by
utilizing technologies such as: ActiveX™ Automation, Open Database Connectivity
(ODBC), and the Win32™ application-programming interface (API).

Integrating Applications via ActiveX Automation
Each Transall Application utilizes Microsoft’s ActiveX Automation technology as
an ActiveX or COM server. Thus, a Transall Application can be controlled by any
ActiveX-enabled application, including the entire Microsoft Office suite of
applications, Microsoft Internet Explorer, Microsoft Internet Information Server,
Microsoft Visual Basic applications, and other “off-the-shelf” ActiveX-enabled
applications such as Visio.

Note Each Transall Application is an out-of-process ActiveX executable.

Components of a Transall Application

19

This means that you can build a Transall Application that consists of components
(also known in the object-oriented programming world as methods), any of which
can be called by an ActiveX-enabled application for a specific purpose via ActiveX
Automation.

Integrating Access to Data via ODBC and JDBC
Transall utilizes both Microsoft's Open Database Connectivity (ODBC) and IBM’s
Java Database Connectivity (JDBC) standards for application interoperability. This
means that you can create a Transall Application that reads data from, or writes data
to, an ODBC or JDBC data source. This can be an important capability for an
application that must utilize a Transall Application to work with disparate databases
that can be located anywhere on your organization’s LAN, WAN, Intranet, or over
the Internet.
For ODBC and JDBC operability, Transall expects that a complete and valid ODBC
or JDBC installation is available on your personal computer or workstation

Supporting Win32 Platforms
Because Transall Applications use Microsoft's Win32 technology, you can deploy
them under either Windows 95/98/2000 or Windows NT 4X and later, throughout
your organization.

COMPONENTS OF A TRANSALL APPLICATION
You build a Transall Application from a set of related components. Some of these
components are required and others are optional, depending on the tasks that the
Transall Application must perform. The tool organizes the process of translating and
reorganizing data in to five reusable components. These are:

1. Sources

2. Destinations

3. Maps

4. Logic trees

5. Scripts

You use the Transall Editor, a part of the Transall package, as the development
environment for creating and organizing these components. Chapter 4 - Interacting
with Transall Editor on page 27 introduces this tool’s features.
Figure 10 on page 21 summarizes the features of the components that can be part of
a Transall Application.

Note Transall supports ODBC Level 2 and later.

Note Transall does not support Windows ME.

Chapter 3 – Transall Overview

20

SOURCES, DESTINATIONS, AND MAPS
A Transall Application organizes data into Records. Thus, a Transall Application
might have knowledge about one or more input records, one or more output records,
and how to use information in the input records to store information in the output
records. This knowledge is based upon components called Sources, Destinations,
and Maps.
When the Transall Application runs, it obtains input records by interacting with
Source components and produces output records by interacting with Destination
components. A Transall Application can interact with a variety of Sources and
Destinations at the same time:

• Files whose record formats use fixed-length or variable-length fields

• Files whose record formats are based on COBOL copybooks

• Files whose format is “well formed” XML

• ODBC data sources

• Oracle product-specific file organizations

Each Source or Destination component describes at least one structure, called a
Record. Each Record contains a series of “placeholders” for information, called
fields. Each field is defined to contain a particular piece of information with its own
characteristics. For instance, a field's datatype determines whether the Transall
Application considers that piece of data to be a number, a date/time, or a string of
characters.

Table

Source Map

Records

Type:
File or ODBC

Destination

Records

Type:
File or ODBC

Walk Source1

Execute: Call PrepareRecord(R)

Output: Destination2:Record3

Logic Tree

Public Sub MySub()
Dim X,Y,Z As Integer
Z = X * Y
Exit Sub

Script

F1 F2 F3

F4 F5 F6

F7 F8 F9

Transall Database

F1 F2 F3

F4 F5 F6

F7 F8 F9

Source Record

Destination Record

Set

Components of a Transall Application

21

Figure 10: Components in a Transall Application

A Source or Destination can refer to more than one related record structure, which
means that it contains more than one Record description. For example, your Transall
Application might be required to work with a data set whose record structure
varies—that is, where the set of fields present can vary from data record to data
record, either according to a fixed pattern or to a “record type” field that is itself part
of the record. To process varying data records, you can create a Source or
Destination that contains more than one Record description.

Chapter 3 – Transall Overview

22

Typically, the origin of data for a given field in a Destination’s Record is some field
in a Source Record, or the origin is a expression that involves one or more fields in
one or more Source Records. Maps describe where data is pulled from to populate a
Destination Record.
For a description on how to create Sources and Destinations, see Working with
Sources and Destinations on page 99. Working with Maps on page 249 describes
how to create Maps.
To direct the Transall Application to take information obtained from one Source, or
from more than one Source, and transform it into information that is written to one
or more Destinations, you create a component called a Map. A Map describes the
origin for each piece of data that becomes stored in each field of the specified
Destination's Record.

TABLES AND SETS IN THE TRANSALL DATABASE
Optionally, you can define temporary storage in computer memory for a Transall
Application to use. This storage is distinct from the storage that the Transall
Application creates implicitly and on-the-fly as it works to buffer Source and
Destination data records.
To make available this distinct storage, you create components Tables and Sets in
the Transall database.

• A Table describes a set of data organized into “columns.” Each “row” in a Table
has the same number of values, and those values occur in the same pattern in
every row.

• When the rows in a pair of Tables have a particular “parent-child” relationship,
you can create a Set to describe that relationship. A parent-child relationship
between a pair of Tables means that each row in the “parent” Table is related to,
or “owns,” certain rows in the “child” Table.

The Transall Application can operate on rows in Tables similarly to instances of
Records that are defined in a Source or Destination. That is, you can insert a new row
into a Table, read or write a Table’s next row, and delete a Table row. These
operations are listed in Appendix A:Statement Syntax on page 391
Parent-child relationships can be defined via sets to describe the relationship
between tables, in the Transall database. The Transall Database is just a temporary
“Scratch Pad” in computer memory while the application is running. For example,
assume that your Transall Application’s Transall Database contains a pair of Tables
that hold the data for a set of insurance policies written by the same agent and for the
endorsements on those policies. Each policy has one or more endorsements. The
policy data is stored in one Table, and the endorsements data is stored in a second
Table. In this case, you could create a Set that relates the “parent” Table of policy
data to the “child” Table of endorsements data. Each row in the policy Table relates
to one or more rows in the endorsements Table.
For more detail on how to create these components, see Working with the Transall
Database on page 259.

Components of a Transall Application

23

LOGIC TREES
A Logic Tree component describes a series of operations. These operations describe
the flow of data through the Transall Application. Typically, an application starts a
Transall Application by invoking one of its Logic Trees.
With the goal of making it simple to express the operations that your Transall
Application performs, a basic Logic Tree contains the following kinds of
instructions:

• Perform a series of iterative, or “looping,” instructions.

• Perform alternate instructions when there is a change in the type of input data
record or in the value of a field from input data record to input data record.

• Test any data value known to the Transall Application, and if some condition is
true, perform an alternate series of instructions.

• Input the next data record from a Source.

• For the current data record in some Destination, perform the data movements
and calculations described in a Map.

• Execute any Transall Script statement.

• Output the next data record to a Destination.

A Logic Tree might contain only a simple series of instructions, which the Transall
Application performs in sequence, from the first instruction to the last.
However, certain Logic Tree instructions allow “branching” behavior. These
instructions represent an alternate path, or detour, from the Logic Tree's main line
series of instructions down one of the logic tree branches. Branch instructions appear
nested in the Logic Tree Graphical User Interface (GUI).
For descriptions in more detail on how to create Logic Trees and specify its
instructions, see Working with Logic Trees on page 267.

TRANSALL SCRIPTS AND SCRIPT MODULES
The Transall editor generates Transall script for the data definitions and operations
you setup in the editor’s data sources destinations, maps, and logic trees. In this
regard the Transall editor is a code generator. This Transall script is then compiled
(converted into a form of machine language).
Transall’s Editor also enables you to create Transall Script source code for custom
routines, written by you, that you can use in your Transall Application. Editor
automatically associates a certain set of built-in methods, called events, with each
component that you create, such as OnOpenAfter and OnCloseBefore for file-based
Sources and Destinations that you can perform custom operations in via scripts you
create.
You can also create your own custom stand alone Transall Script routines. These
custom routines can perform tasks not expressed by the instructions and calculations
contained in your Transall Application’s Logic Trees and Maps. The custom routines
can be called from:

Chapter 3 – Transall Overview

24

• An Execute instruction in a Logic Tree

• A target expression in a Map

• Any built-in Transall Application method

Using the Editor, you can code one or more related, custom, Transall Script routines
in a component called a Script Module. You define each routine as either a function,
which returns a value to its caller, or as a subroutine, which does not return a value
to its caller.
For descriptions in more detail on how to create Transall Script routines and
integrate them into a Transall Application, see Working with Transall Scripts and
Script Modules on page 319.

THE TRANSALL PRODUCT PACKAGE
Your Transall product package includes these tools for building and deploying
Transall Applications:

• Transall Editor (the executable file tranedit.exe) provides an integrated
development environment (IDE) for building a Transall Applications from a
collection of related components called a project. Transall Editor offers a look-
and-feel similar to other popular IDEs, such as Visual Basic. You also use
Transall Editor to debug a running Transall Application.

• Transall Compiler (the executable file trancc.exe) produces a Transall
Application’s executable file (.TEX). Transall Editor invisibly calls Transall
Compiler as needed, but Transall Compiler can also be started from the
Windows command line, or a Windows batch file.

• Transall Host (the executable file tranhost.exe) starts, or instantiates, a
Transall Application as an ActiveX Automation server. In fact, Transall Host
provides the run-time environment for a Transall Application when executing as
an ActiveX server.

• Transall Exe (the executable file tranexe.exe) permits starting or calling a
Transall Application from the Windows command line or from a Windows batch
command file. This allows you to run and debug a Transall Application in a
context that does not require an independent, calling ActiveX-enabled client
application.

For more descriptions on how to operate the Transall Editor development
environment, see Transall Projects on page 27.
For more detailed descriptions on how the Transall Compiler produces a Transall
Application, how to use Transall Editor to debug a running Transall Application, and
how to use the Transall Host and Transall Exe facilities, see Debugging and
Deploying Transall Applications on page 285.

About the Transall Editor

25

ABOUT THE TRANSALL EDITOR
Use the About Transall Editor command to view the copyright information and the
current version and release number.

To View the About Box
1. Select Help>About Transall Editor.

The About Transall Editor dialog displays.

2. Click Info for System Information that lists the loaded DLLs and their locations,
sizes, and versions. This information may be helpful when working with
Customer Support if mismatched software is suspected.

3. Click OK to return to the Editor.

Chapter 3 – Transall Overview

26

27

Chapter 4- Interacting with Transall Editor

Interacting with Transall Editor
This chapter describes how to use the Transall Editor development environment to
create a Transall project and how to recognize and operate the Transall Editor’s
most prominent user-interface features.
The Transall product includes the Transall Editor whose look-and-feel is similar to
other popular integrated development environments (IDEs) on the Windows
platform.
The Transall Editor provides an integrated environment for:

• Creating the components from which you build a Transall Application

• Customizing the source code for built-in Transall Script component methods

• Producing a Transall Application executable file

• Examining the Transall Script source code generated from producing a Transall
Application

• Starting an existing Transall Application independently of a separate, ActiveX-
enabled, client application

• Debugging a running Transall Application

For more information about using the Transall Editor to create and organize project
components, see the Table of Contents of this book for more information.
For more information about using the Transall Editor to run and debug Transall
Applications, see Debugging and Deploying Transall Applications on page 285.

TRANSALL PROJECTS
As described in the Transall Overview, you build a Transall Application from a set
of components that are defined in the Transall Editor. The Transall Editor helps you
organize these components as a project.
The Transall Editor opens one project at a time for you to work with. You build a
Transall Application using the components in the open project. The Transall Editor
supports a project component sharing feature that let’s you reuse components
developed in other Transall Applications.
Transall project sharing enables top level components of Transall projects such as
sources, destinations, maps, logic trees, scripts, Transall database tables and sets to
be shared between projects.

Chapter 4 – Interacting with Transall Editor

28

CREATING A PROJECT
After you start the Transall Editor for the first time, your first step should be to use
the File>New command to create a new project. When you create a new project, you
can specify its name and the target directory (or folder) where the Transall Editor
stores the project's contents in the Component Inspector.

NAMING A PROJECT
Naming a project is an important step. The project's name determines the names of
the files in which the Transall Editor stores the project's contents. Most importantly,
the name of the Transall Application that you produce is based on the name of the
project that is currently open in the Transall Editor. That is, a Transall Application’s
executable file (project.TEX) takes the name of the open project.
You can store a project’s files in any directory that your workstation can access. If
other Transall developers depend upon the components in your project, you might
prefer to specify a target directory that resides on a File Server or some other shared
storage resource.
After you create a project, the Transall Editor displays as shown in Figure 11.

Figure 11: Default Organization of Transall Editor

Menu

Toolbar

Component
Explorer
Bar

Component
Inspector
Bar

Status Bar

Bar

Transall Projects

29

Default Project Components
The Component Explorer displays a project’s contents or its set of components, in a
“tree”. By default, a new project always contains an empty container component
named Transall Database. The Transall Database always appears as the first “node”
in the tree of components displayed in the Component Explorer. For more
information about the components found in a project's Transall Database, see
Working with the Transall Database on page 259.

MENU BAR AND TOOLBARS
The Transall Editor’s menu bar presents drop-down menus. On those menus appear
selectable menu commands.

Figure 12: Menu Bar

The toolbar, located by default just beneath the menu bar, presents command
buttons; each button is a shortcut to a command also found in one of the Transall
Editor’s drop-down menus.

Figure 13: Toolbar

The status bar is located by default at the bottom of the Editor. The status bar’s left
end displays a one-line message about the results of the most recently completed
Transall Editor operation. The status bar’s right end displays the state of the CAPS
LOCK, SCROLL LOCK, and NUM LOCK keys on your computer’s keyboard.

Figure 14: Status Bar

CONTROL BARS AND WORKSPACE AREA
The Transall Editor presents information about the open project’s components in a
Component Explorer control bar, Component Inspector control bar, and an empty
workspace area.
Click on the name of a component in the Component Explorer bar to select it and
double-click on the name to open it in the workspace area.

Chapter 4 – Interacting with Transall Editor

30

COMPONENT EXPLORER CONTROL BAR
The Transall Editor’s Component Explorer bar displays a project's contents, or its set
of components, as a tree. As shown in Figure 15, each tree node may have a clickable
+ or - control. Clicking on these controls will reveal or hide a portion(s) of that node.

Figure 15: Tree Controls in the Component Explorer Control Bar

As you create new components in the open project, the Transall Editor adds them as
tree nodes under the project name node. The Transall Editor displays a container
node for the open project's Transall Database, followed by container nodes for the
project’s components, such as Sources, Destinations, Maps, Logic Trees, and Script
Modules.

Opening a Component from the Component Explorer
Control Bar
Double-click on the name of a component in the Component Explorer bar to open it.
Opening a component causes the Transall Editor to display its contents in an
Assistant that always appears within the Transall Editor’s workspace area. More
than one component can be open at the same time; thus, more than one Assistant can
appear in the Transall Editor’s workspace area.

Transall Projects

31

Figure 16 indicates the location of two Assistants and also illustrates how the
selected Assistant corresponds to the selected component in the Component
Explorer bar.

Figure 16: Component Assistants in Workspace Area

You can edit the component’s contents in its Assistant. Each kind of component has
a characteristic interface for editing its contents.

Assistants“Record” windows

Chapter 4 – Interacting with Transall Editor

32

COMPONENT INSPECTOR CONTROL BAR
After you select a component in the Component Explorer bar, you can examine and
edit its details properties in the Component Inspector bar.
The Component Inspector bar presents two sets of information for the selected
component:

• Under the Properties tab, component properties and property values

• Under the Events tab:

• Names of events that pertain to the component; each event name
corresponds to a built-in Transall Script subroutines that you can customize
for that component.

• Names of built-in methods that Transall generates for the component. Some
of these generated script subroutines are read only and can not be modified
or customized by the user, some of the subroutines are available to be
modified and customized by the user. The subroutines that are available for
user modification are usually the “On” events subroutines such as
“OnOpenAfter” or “OnWriteAfter”.

Editing Component Properties
When the Component Inspector's Properties tab is selected, the selected
component’s property names and values are displayed, as shown below in Figure 17.
The Properties view allows you to view and edit the detailed values of a component’s
properties.

Figure 17: Properties View in the Component Inspector

Transall Projects

33

To Edit Component Properties

• Determine whether a property's value is directly editable in this view by clicking
the mouse in the property’s value cell. If the value is directly editable, in the cell
appears one of the following:

• A text editing cursor, for typing a new property value

• A drop-down button with a triangle , for selecting a new property value

• A browse button, for using a Browse dialog to select a directory or file

Figure 18, shows the appearance of the Component Inspector as you edit a
property value by selecting from a drop-down list.

Figure 18: Selecting a Property Value in the Component Inspector

Opening Source Code for a Component's Built-In Methods
When the Component Inspector's Events tab is selected, the names of all events that
a Transall Application can detect for this kind of component are displayed. Each
event represents a point in the Transall Application’s activity where a set of
operations can be performed. Some of these events are optional. The optional events
are noted with a lighting bolt. Optional events are defined by the Transall developer
and they are called by Transall based on the events name. For instance the
“OnOpenAfter” event is called after the Open subroutine for source or destination
has been executed. These optional events provide the Transall developer a place
holder for custom script logic. These place holders are sometimes called “User-
Exits” in other systems similar to Transall.

Chapter 4 – Interacting with Transall Editor

34

Figure 19: Display of Event Method Source Code

Note The Transall Editor forms the name of a component’s corresponding optional events by
appending an underline character (_) to the selected component’s name, then
appending the name of the event.

After you create a optional event for a component, the method’s source code is stored
as part of the component, not in a separate component.
Each optional event that you create becomes part of the executable code of the
Transall Application that is produced from the open project.
For a Transall Application produced from the project shown in Figure 19, as the
Transall Application runs it automatically calls the optional event
Source1_OnOpenAfter whenever it detects an “open-source” event that pertains
to Source1

You can specify a customized set of operations in a optional event, which is a
routine that is coded by you in the Transall Script language. For more information
about how to code routines in the Transall Script language, see Working with
Transall Scripts and Script Modules on page 319.

Note In the Component Inspector, the name of an event appears in boldface if source code
has been created for its corresponding optional event.

Transall Projects

35

If you decide to code an optional event for a particular component, double-click on
the event’s name. This causes the Transall Editor to open a Script Module Assistant
in which you can add new Transall Script source code for that event. Transall
prebuilds the events source code with a shell for the events.
For example, Figure 19, shows the shell source code generated for the optional event
Source1_OnOpenAfter. This event will be executed after the mandatory Open
event is executed for the “Source1” component.

REVEALING AND HIDING CONTROL BARS
By default, if not hidden, the Component Explorer control bar appears in the upper
left portion of the Transall Editor; the Component Inspector control bar appears in
the lower left portion.

To Reveal and Hide Control Bars

• Select View>Component Explorer or View>Component Inspector to
reveal or hide these bars. You can also perform the following tasks:

• To maximize a bar, click on the control button in the bar's upper right
border.

• If the bar is already maximized, click on the control button in the bar's
upper right border to display the bar in its default size.

• To hide the bar, click on the X button in the bar's border.

• To reveal and hide the bars, you can also click on the Transall Editor
toolbar’s Component Explorer or Component Inspector icons.

For other control bars, se the View menu for a list of the available control bars
and toolbars.

REARRANGING CONTROL BARS AND TOOLBARS
You can change the appearance of the Transall Editor by rearranging its toolbar and
control bars (e.g., Component Explorer and Component Inspector bars). Each
toolbar and control bar has a “handle” that you can grab with the mouse and drag to
a different location within the Editor.

To Rearrange Control Bars and Toolbars

• Drag-and-drop the bar so that it appears as a distinct window within the Transall
Editor (e.g., floating).

-or-

Drag-and-drop the bar along one of the Editor’s four edges (e.g., docking).

Chapter 4 – Interacting with Transall Editor

36

Figure 20 on page 36, shows the handles for the Transall Editor bars.

Figure 20: Default Location of Docking Handles for Toolbar and Control Bars

Why rearrange the Transall Editor toolbar and control bars? As you begin to add
components to a new Transall project, you might find that you interact with the
Component Explorer and toolbar most often. So, you might prefer to hide the
Component Inspector and to rearrange the toolbar and the Component Explorer to
allow more space for the workspace area and for each new component’s Assistant.
As you grab a docking handle and begin to move it, you will see a dim rectangular
outline of the item. As you move the item toward an edge, the rectangle will “dock,”
or jump towards that edge, then change its shape to conform to the height or width
of that edge. To cause a bar not to dock, hold down the CTRL key while moving it.

Docking
handles

Transall Projects

37

Figure 21 on page 37, shows that the user has grabbed the toolbar’s docking handle,
dragged it toward the right edge, and released it. The toolbar becomes docked along
the right edge.

Figure 21: Dragging the Toolbar by Its Docking Handle

WORKSPACE AREA
This region of the Transall Editor contains the Assistants of all open components in
the open project. Each Assistant is a “child” of the Transall Editor—that is, an
Assistant can be maximized only to fill the workspace area.

OTHER BARS AND CHILD WINDOWS
The Transall Editor can also display an Output control bar to present the results of
compiling a Transall Application, the results of performing the Project>Compile
command.

Outline of
dragged
toolbar

New docking
location for
toolbar

Chapter 4 – Interacting with Transall Editor

38

When you use the Transall Editor to debug a running Transall Application, the
Transall Editor can open and display additional Watch, Call Stack, and Variables
child windows to assist in debugging.
For more information, see Debugging and Deploying Transall Applications on page
285.

GLOBAL RENAMING OF COMPONENTS AND
SUBCOMPONENTS
If you rename a component, the Transall Editor saves you time by automatically
replicating that name change wherever that component or subcomponent is
referenced by name in the open project.
The rename feature is optional and can be turned off by selecting Tools>Options
and under the Preferences Tab, click on the check box “Remove and/or invalidate
references on delete” to remove the check mark and the optional will be turned off.

TRANSALL PROJECT SHARING
Transall project sharing enables top level components of Transall projects such as
sources, destinations, maps, logic trees, scripts, Transall database tables and sets to
be shared between projects.
There are two ways to shared project components. The first is called linking. Let’s
say you have three inputs (sources) and four outputs (destinations), let’s make each
source and destination its own Transall project, for a total of seven individual
Transall projects. You can then create a master Transall project, that references all
the other project definitions, and links all the information from all the individual
projects into the master project. Changes are made in the individual shared projects
and gets updated in the master project though a synchronizing feature, that allows
you to synchronize a single project, two projects, three projects, or all projects at any
time. This allows several different people to work on different projects at the same
time, and then use the synchronize feature to update the master project.
The other way of project sharing, is called copying. The copy share actually does a
copy, but does not maintain a connection (link) between the other projects. What the
copy does is physically pick up the data from a source project and drop it into a target
project, thus becoming part of that project. The copied resources can be edited in the
new project, independent of the source project copied from. The copy share facility
has no synchronizes feature like the link share facility. Copy sharing is mostly used
when a company may want a starting point for a new project and has other projects
that have similar data already defined and rather than redefining all of the similar
data, you could just copy from the other projects and put it into your new project.
Transall tries to minimize sharing problems by disallowing duplicate names and
forcing destinations to be included with shared maps. It is the responsibility of the
user to assure that the shared items have the resources they need. For example,
Transall logic trees may reference many items. If a logic tree is shared as a link, all
items referenced by the logic tree must also be shared as a linked item in the
receiving project.

Transall Projects

39

TRANSALL PROJECT COMMAND-LINE COMPILATION
The Transall Editor accepts two optional command-line parameters:

• /Build

• /SyncLinks

The syntax of the command line is as follows:
Tranedit <project name> [/Build] [/SyncLinks]

where:

Syntax sample:

If a valid file name is passed with either or both parameters, the Editor is never
displayed and runs in batch mode; otherwise, the Editor starts as if a parameter
wasn’t passed.
You can use Build and SyncLinks separately or together. If you use them together,
SyncLinks is processed first.
Both parameters are case-insensitive and can be in either order.
Sample batch file text:

Build Generates project code and compiles it. The results of the compile are
displayed on the console and the compiler return value is passed back
as the return from the Transall Editor.

SyncLinks Refreshes project links and saves the project file. Results of the
synchronize are routed to the console.

Tranedit “C:\Transall\Test Projects\Project1.tpj” /Build /SyncLinks

@ECHO OFF

Tranedit "C:\TransAll\Test Projects\Test1\CopyTable.tpj" /
Build /SyncLinks

IF errorlevel 1 GOTO FAILURE

:SUCCESS
ECHO "*** Successful compile ***"
GOTO THE_END

:FAILURE
ECHO "*** Compile Failed ***"
GOTO THE_END

:THE_END
pause

Chapter 4 – Interacting with Transall Editor

40

41

Chapter 5- Transall Editor Menu Options

Transall Editor Menu Options

This chapter describes the items in the eight menus that comprise the Transall
Editor’s menu bar. The Transall Editor has the following menus:

• File Menu

• Edit Menu

• View Menu

• Project Menu

• Debug Menu

• Tools Menu

• Window Menu

• Help Menu

ADDITIONAL MENUS
Along with these permanent menus, the Transall Editor also displays an additional
menu in the menu bar whenever you open one of the five Assistant editor windows
for a particular component. This extra menu appears between the Debug and Tools
menus.

This menu... Appears when opening the...

Resource File Assistant
XML Plus Assistant

Database Database Assistant

ScriptModule Script Module Assistant

Logic Tree Logic Tree Assistant

Map Map Assistant

Chapter 5 – Transall Editor Menu Options

42

FILE MENU
The File menu comprises the following menu options:

Note that if you enable the Documanage interface using the
Tools>Options>Documange command, you’ll see an additional menu item for
Documanage under the following menu items:

• File>Open

• File>Save

• File>Save As

This additional menu item allows to open/save a project file or a Documanage file:

Figure 22: Documange Menu Item

Refer to Using the Documanage Tab on page 95 for further information.

NEW
Use the New command to create a Transall project. When you create a new project,
you can specify its name and the target directory (or folder) where the Transall Editor
stores the project's contents in the Component Inspector.

To Create a Project

• Select File>New.

If you want to See
Create a project New on page 42

Open an existing project Open on page 43

Close the current project without exiting Close on page 44

Save the project Save on page 44

Save the project under a different name Save As on page 44

Share Transall components between projects Share on page 46

Compile the open project to produce a release version of the Transall Application. Make project.tex on page 47

Exit Transall Exit on page 47

File Menu

43

-or-

Click in the Standard Toolbar.

The project is given the default name of “Project1.tpj”. This name appears in the
Title bar at the top of the page.

You can rename the file by selecting File>Save.

-or-

Click in the Standard Toolbar.

-or-

Select File>Save As.

OPEN
Use the Open command to open an existing Transall project.

To Open a Project
1. Select File>Open.

-or-

Click in the Standard Toolbar.

The Open dialog displays.

Figure 23: Open a Project

2. In the Look in: drop-down list box, select the directory containing the projects.

3. Select the project that you want to open from the list of projects.

Chapter 5 – Transall Editor Menu Options

44

4. Click Open.

5. The name of the selected project appears in the title bar of the Transall Editor.

CLOSE
Use the Close command to close the current Transall project. This command
expedites switching between projects.

To Close a Project

• Select File>Close.

SAVE
Use the Save command to save the current Transall project.

To Save a Project

• Select File>Save.

-or-

Click in the Standard Toolbar.

SAVE AS
Use the Save As command to save the current Transall project under a new name.

To Save a Project with a New Name
1. Select File>Save As.

The Save As dialog displays.

File Menu

45

Figure 24: Save a Project

2. In the Save in: drop-down list box, select the directory where you want to save
the document project.

3. In the File name: list box, type the name you want to assign to the project.

4. Click Save.

Chapter 5 – Transall Editor Menu Options

46

SHARE
Use the Share command to share items in the current project with another project.
See Project Sharing Details on page 331 for a complete explanation of Project
Sharing.

To Share a Project
1. Select File>Share.

The Share dialog box opens.

Figure 25: Share Components between Projects

2. Choose the source project by typing in the project name or by clicking the
ellipsis, button and using the file open dialog. If you manually enter the project
name, you must leave the edit field for the project to open.

A tree of top-level items from the source project is displayed below the project
name.

3. Select items by clicking the check boxes to the left of each item, or right click
for a popup menu that allows all children of the highlighted node to be selected.

The Linked checkbox determines whether the item(s) are shared as a link or
copy. A project can share any number of links and/or copied items from one or
more source projects.

The Use Documanage checkbox means that you want to select the item(s) from
a Documanage Cabinet/Folder (i.e., check Use Documanage and then click the
browse button).

File Menu

47

Source project items for sharing that are grayed out indicate that the item name,
or a key sub item name, already exists in the destination project, and sharing is
disallowed. To include grayed out items into the target project you must rename
the target project items causing the name collision.

4. Click OK once you have made your selections.

MAKE PROJECT.TEX
Use the File>Make project.tex to compile the open project and produce a release
version of the Transall Application.
Prior to using this command you need to specify the project setting that control the
release version. Refer to Editing Build Settings on page 286 for instructions on how
to build a release version of the Transall Application.

EXIT
Use the Exit command to close Transall and return to the Windows Desktop.

To Quit Transall
1. Select File>Exit.

If you've chaned the current project, a Transall message box displays.

Figure 26: Save Changes to Project

2. To save the changes, click Yes. Otherwise, click No.

Chapter 5 – Transall Editor Menu Options

48

EDIT MENU
The Edit menu allows you to edit text in the active window and comprises the
following menu options:

UNDO
Use the Undo command to restore the last action you performed.

To Undo Your Most Recent Editing Action

• Select Edit>Undo.

-or-

Press CTRL+Z.

REDO
Use the Redo command to repeat the action for which you used Undo.

To Redo Your Most Recent Editing Action

• Select Edit>Redo.

CUT
Use the Cut command to move text you've selected onto the Windows Clipboard.
Unlike the action of the Copy command, Cut removes the selected text from its
original location.

If you want to See
Reverse the last action Undo on page 48

Repeat the last action Redo on page 48

Remove the selected text and copy it to the Windows Clipboard Cut on page 48

Copy the selected text to the Windows Clipboard Copy on page 49

Paste the contents of the Windows Clipboard into the project Paste on page 49

Delete the selected document component Delete on page 50

Select the entire contents of the Source window Select All on page 50

Find a word or phrase in the Source window Find on page 50

Replace a word/phrase in the Source window with another word/phrase Replace on page 51

Find a specific component in the project Find in Project on page 52

Replace a word/phrase in a project with another word/phrase Replace in Project on page 55

Edit Menu

49

To Move Text to the Clipboard
1. Select the text.

1 Select Edit>Cut.

-or-

Click in the Standard Toolbar.

Transall places the text on the Windows Clipboard. You can now insert the text in
other locations in the active document. You can also insert the text in other Windows
applications. For details, see Paste on page 49.

COPY
Use the Copy command to place a copy of text you've selected onto the Windows
Clipboard. Unlike the Cut command, Copy leaves the selected text in its original
location.

To Copy Text to the Clipboard
1. Select the text.

2. Select Edit>Copy.

-or-

Click in the Standard Toolbar.

Transall copies the text to the Windows Clipboard. You can now insert the text in
other locations in the active document. You can also insert the text in other Windows
applications. For details, see Paste on page 49.

PASTE
Use the Paste command to copy text from the Clipboard to a location where you
have clicked an insertion point.

To Paste Text from the Clipboard
1. Click an insertion point at the location where you want the text to be inserted.

2. Select Edit>Paste.

-or-

Click in the Standard Toolbar.

Transall copies the text from the Windows Clipboard. The text stays on the
Clipboard until you replace it with text from the next Cut or Copy operation.

Chapter 5 – Transall Editor Menu Options

50

DELETE
Use the Delete command to remove a component from Component Explorer.

To Delete a Component
1. In the Component Explorer, select the component you want to delete.

2. Select Edit>Delete.

-or-

Click in the Standard Toolbar.

A Transall message box displays.

Figure 27: Delete Component

3. If you’re certain you want to delete this component, click Yes; otherwise, click
No.

SELECT ALL
Use the Select All command to select the entire contents of the Source window.

To Select All of the Text
1. Place an insertion point in the Source window.

2. Select Edit>Select All.
Transall highlights the entire contents of the Source window. You can use Cut (see
To Move Text to the Clipboard on page 49) or Copy (see To Copy Text to the
Clipboard on page 49) to manipulate the data.

FIND
Use the Find command to locate a word or phrase in the Source window.

To Find a Word or Phrase
1. Click an insertion point in the upper half of the Source window.

2. Select Edit>Find.

-or-

Tip If you want to delete text in a property field, highlight the text and press DELETE.

Edit Menu

51

Press CTRL+F.

The Find dialog box displays.

Figure 28: Find Dialog Box

3. In the Find what: text box, type the word or phrase you’re trying to locate.

4. Enable the Match whole word only check box if you suspect this word might be
contained in larger words (e.g., you search for drive and the procedure finds
driven).

5. Enable the Match case check box if you want to locate the word or phrase exactly
as you’ve typed it.

6. Click Find Next to initiate your search; otherwise, click Cancel.
Transall highlights the first occurrence of your search phrase.

REPLACE
Use the Replace command to search for an replace one phrase with another while in
the Source window.

To Replace a Search Phrase
1. Select Edit>Replace.

-or-

Press CTRL+H.

The Replace dialog box displays.

Figure 29: Replace Dialog Box

Chapter 5 – Transall Editor Menu Options

52

2. In the Find what: text box, type the word or phrase you’re trying to locate.

3. In the Replace with: text box, type the word or phrase you want to replace the
search phrase.

4. Enable the Match whole word only check box if you want to search exclusively
on the word or phrase you’ve typed.

5. Enable the Match case check box if you want to locate the word or phrase
exactly as you’ve typed it.

6. Click Find Next to initiate your search: then, do any of the following:

FIND IN PROJECT
Use the Find in Project command to locate a word or phrase found in a script within
the current project.

To Find a Word or Phrase in a Project
1. Select Edit>Find in Project.

-or-

Press CTRL+SHIFT+F.

If you want to Do this:
Replace only this instance of the search phrase Click Replace.

Replace all instances of the search phrase Click Replace All.
Cancel your search-and-replace task Click Cancel.

Edit Menu

53

The Project Search dialog box displays.

Figure 30: Find a Component in the Current Project

2. In the Find what: text box, type a word or phrase found in the component that
you’re trying to locate.

3. Leave the All Items box checked to search across all items

-or-

Remove the check mark and check the individual item(s) in the list on the right
that you wish to search on. The first item in the list, Extraneous Properties, can
be used to search for file-related properties such as file names as well as other
miscellaneous properties.

4. Enable the Match whole word only check box if you want to search exclusively
on the word or phrase you’ve typed.

5. Enable the Match case check box if you want to locate the word or phrase
exactly as you’ve typed it.

6. Click Find to initiate your search.

Chapter 5 – Transall Editor Menu Options

54

A search on all scripts containing the term, “assign file handle”, returns the
following lists of scripts.

Figure 31: Results of a Project Search

7. Double-click on a script name in the Name column.

The script opens in the Script Module Assistant with the first occurrence of the
phrase in the script highlighted.

Figure 32: Open a Script from the Project Search Dialog Box

Edit Menu

55

8. Click on a column header in the Project Search dialog box to sort the results in
ascending/descending order by the selected column name.

The Find what: text box contains a drop-down list which retains your last four
searches.

REPLACE IN PROJECT
Use the Replace in Project command to find non-generated text in a project and
replace each instance with different text. It DOES NOT include names or objects but
instead mainly includes items such as user-entered scripts and file locations.

To Replace Text in a Project
1. Select Edit>Replace in Project.

The Project Replace dialog box opens:

Figure 33: Replace non-generated Text in a Project

2. Type in an item in the Find what: text box.

3. Type in an item in the Replace With: text box.

4. Enable the Match whole word only check box if you want to search exclusively
on the word or phrase you’ve typed.

5. Enable the Match case check box if you want to locate the word or phrase
exactly as you’ve typed it.

Chapter 5 – Transall Editor Menu Options

56

6. Select Replace to replace each instance individually or Replace All to replace
each instance all at once.

VIEW MENU
The View menu comprises the following menu options:

COMPONENT EXPLORER
Use the Component Explorer command to open the view of the Component
Explorer. The Component Explorer is the central location for accessing, viewing,
adding, and deleting the components in your project.

To Display the Component Explorer

• Select View>Component Explorer.

-or-

Click in the Standard Toolbar.

If you want to See
Display the Component Explorer Component Explorer on page 56

Display the Component Inspector Component Inspector on page 57

Display the Output Bar Output Bar on page 59

Display the Logic Bar Logic Bar on page 60

Display the Resource Bar Resource Bar on page 61

Display the SQL Bar SQL Bar on page 62

Display the Transall Editor’s three debugging control bars Debug on page 62

View the breakpoints you have set for the current project Breakpoints on page 64

Display/hide or change the appearance of the File and Debug toolbars Toolbars on page 64

View Menu

57

Transall displays the Component Explorer.

Figure 34: Open Component Explorer

If you move the cursor over the Component Explorer and right-click, the following
menu opens:

Refer to Component Explorer Control Bar on page 30 for a description of how to use
the Component Explorer.

COMPONENT INSPECTOR
Use the Component Inspector command to open the Component Inspector bar. The
Component Inspector allows you to examine and edit the detail properties of a
component selected from in the Component Explorer.

To Display the Component Inspector
1. Open the Component Explorer.

2. Select a component by double-clicking a name in the Component Explorer.

Chapter 5 – Transall Editor Menu Options

58

3. Select View>Component Inspector.

-or-

Click in the Standard Toolbar.

The Component Inspector opens and displays the detail properties of the selected
component:

Figure 35: Open Component Inspector

The Component Inspector has two tabs:

• Properties - this is the default view. The Properties tab displays the
component’s properties and allows you to edit the detailed values of the
properties.

• Events - the Events tab displays the following:

• Names of events that pertain to the component; each event name
corresponds to a built-in Transall Script subroutines that you can customize
for that component.

• Names of built-in methods that Transall generates for the component. Some
of these generated script subroutines are read only and can not be modified
or customized by the user, some of the subroutines are available to be
modified and customized by the user. The subroutines that are available for
user modification are usually the “On” events subroutines such as
“OnOpenAfter” or “OnWriteAfter”

For a complete description on how to use the Component Inspector, refer to
Component Inspector Control Bar on page 32.

View Menu

59

OUTPUT BAR
The View>Output Bar command lets you manually open the Output Bar.
The Output Bar automatically opens whenever you compile a project using the
Project>Compile command or synchronize the data source or links in a project
using the Project>Synchronize command. The Output bar displays messages that
show the progress and results of the compilation or synchronization process as well
as any errors that may occur.

To Display the Output Bar

• Select View>Output Bar.

Transall displays the Output Bar.

Figure 36: Open Output Bar

The Output Bar has four tabs:

• Build - Displays the results of the compilation process. Any errors that may
have occurred appear in this tab. It also indicates whether the project
successfully compiled.

• Generate - Displays status messages showing the progress of the
compilation process.

• Synchronize - Displays the results of the data source or link synchronization
process. Any error messages appear in this tab. It also indicates whether the
synchronization was successful.

• Profile - Displays the Profile Report. The profile report is in two sections.
The first section lists up to 100 of the most time consuming lines of script
from the project, sorted from most time-consuming to least time-consuming.
The second section lists up to 100 of the most-executed lines of script from
the project, sorted from most-executed to least-executed.

To display the profile report, check the “Runtime Profiler” checkbox in the
Debug tab of the Project>project Settings dialog box.

For further information, refer to Step 4 under To Specify Command Line
Debugging on page 295.

For further information on compiling a project, refer to Debugging and Deploying
Transall Applications on page 285.

Chapter 5 – Transall Editor Menu Options

60

For further information on the synchronization process, refer to Project Sharing
Details on page 331.

LOGIC BAR
Use the Logic Bar command to display a set of icons that are used in building a logic
tree.

To Display the Logic Bar

• Select View>Logic Bar.

-or-

Press Ctrl+Alt+L.

Transall displays the Logic Bar.

Figure 37: Open Logic Bar

There are three sets of Logic Tree icons. Use the control in the Logic bar's top
border to select from the following sets of LogicTree instructions:

• Standard - The Standard set of instructions includes the Comment,
Condition, ControlBreak, DoWhile, Execute, Input, Map, Output, Update,
and Walk instructions. Every new Logic Tree will use at least some of these
instructions.

• Documaker FP - The Documaker FP set of instructions includes the
AddForm, AddFormsLibrary, AddTag, EndMergeSet, MergeSetBreak,
SetEffectiveDate, SetRulebase, StartMergeSet, and SubmitVRF
instructions. Select the Documaker FP set of instructions if you are coding
this Logic Tree to produce output data records for a Documaker FP File
(VRF) Destination.

• Documaker FP Plus - The Documaker FP Plus set of instructions includes
the FpAddTag, FpComment, FpDataGroup, FpDataHeader, FpFooter,
FpForm, FpHeader, FpKeepOnSamePage, FpLayout, and FpPageBreak
instructions. Select the Documaker FP Plus set of instructions if you are
coding this Logic Tree to produce output data records for a Documaker FP
Plus (VRF) Destination.

View Menu

61

RESOURCE BAR
Use the Resource Bar command to display a list of resources contained within the
current project. The Resource Control Bar is automatically invoked and closed, by
default, when a Map Assistant is opened and closed. You can change the Default
behavior via Tools>Settings by and unchecking “Automatically show Resource
control bar”.

To Display the Resource Bar

• Select View>Resource Bar.

-or-

Press Ctrl+Alt+R.

Transall displays the Resource Bar.

Figure 38: Open Resource Bar

The Resource control bar contains the following context menu items:

• Sorted—provides control concerning displayed resources. You can Sort the
display of the tree listing in alphabetical order, or deselect Sort and display
the tree in physical order.

• Flattened—provides control concerning displayed resources. You can
Flatten the hierarchy of the tree listing, or deselect Flattened and display the
expanded tree listing.

Note Each time you start the Transall Editor, it reverts to the default settings of Sorted=On
and Flattened=Off. Toggling either of these menu items causes a repopulation of the
entire control bar.

Chapter 5 – Transall Editor Menu Options

62

• Automap—If a Map Assistant has focus and some item in the Resource
Control Bar is selected, then Automap is enabled. If you’re mapping a
Source record to a target record that uses a one-to-one relationship, Automap
attempts to assign map expressions by matching the field names.

• Map Expression— achieves the same results as dragging-and-dropping
from the Resource control bar to the Target Expression field of a record.
First, select a Target Expression field in the Map Assistant; then, right-click
a Resource and select Map Expression. The Resource is displayed in the
Target Expression column.

SQL BAR
Use the SQL Bar command to display a control bar that provides access to, and
allows modification of, SQL Filter, and Join data. By default, this control bar opens
and closes along with the DataSource Assistant, but you can uncouple it by using
Tools>Settings and unchecking the Automatically show SQL control bar
checkbox.
If the control bar contains Filter or Join expressions, you’ll see a check mark on that
tab.

To Display the SQL Bar

• Select View>SQL Bar.

Transall displays the SQL Bar.

Figure 39: Open SQL Bar

If the control bar contains Filter or Join expressions, you’ll see a check mark on that
tab.
For further information on defining Join expressions, refer to Defining Join Criteria
for the Query on page 149.
For further information on defining filters, refer to Defining Filter Criteria on page
151.

DEBUG
Use the Debug command to individually display the Transall Editor’s three
debugging control bars:

• Watch Window

• Variables Window

• Call Stack Window

View Menu

63

To Display the Watch Window

• Select View>Debug>Watch Window.

Transall displays the Watch Window.

Figure 40: Open the Debug Watch Window

The Debug Watch bar displays the variables whose values you want to monitor,
regardless of their location.

To Display the Variables Window

• Select View>Debug>Variables Window.

Transall displays the Variables Window.

Figure 41: Open the Debug Variables Window

The Debug Variables bar displays both Auto and Local variables.
The Auto tab displays the variables, for the current and previous lines, that you’re
debugging at the current time. The Local tab displays all variables defined inside the
function.

To Display the Call Stack Window

• Select View>Debug>Call Stack Window.

Transall displays the Call Stack window.

Figure 42: Open the Debug Call Stack Window

Chapter 5 – Transall Editor Menu Options

64

The Debug Call Stack bar displays the current business rule being processed. If you
have nested rules, this bar displays the tree view and indicates the current rule.
For further information, refer to Operating Transall under Debugging Control on
page 303 and Viewing Debug Variables in the Variables and Watch Bars on page
304.

BREAKPOINTS
Use the Breakpoints command to see the breakpoints you have set for the project.
You can also use this command to remove individual breakpoints or all of the
breakpoints you have set.

To View Breakpoints

• Select View>Breakpoints.

The View Breakpoints dialog appears:

Figure 43: View Breakpoints

For further information on setting breakpoints in Transall, refer to Breakpoints in
Transall on page 302.

TOOLBARS
Use the Toolbars command to toggle the view of the various toolbars (e.g., display
or hide) and use the Customize option to adjust the buttons available on the editor’s
toolbars.

To Display/Hide the Standard Toolbar

• Select View>Toolbar>Standard.

-or-

Press Ctrl+Alt+5.

If the Standard toolbar is already displayed then it will be hidden. If it is hidden,
then it will be displayed.

View Menu

65

To Display/Hide the Debug Toolbar

• Select View>Toolbar>Debug

-or-

Press Ctrl+Alt+D.

If the Debug toolbar is already displayed then it will be hidden. If it is hidden,
then it will be displayed.

To Display the Customize Dialog Box

• Select View>Toolbar>Customize

The Customize dialog box displays.

Figure 44: Open the Customize Dialog Box

The Customize dialog box has two tabs:

• Commands - The Commands tab shows the buttons under the File and
Debug toolbars. You can see a description of a button by clicking on it.

Chapter 5 – Transall Editor Menu Options

66

• Toolbars - The Toolbars tab allows you to change the look of the buttons in
the File and Debug toolbars and add a new toolbar to the interface. The
options on this tab lets you turn off/on tooltips, give the buttons a 3D
appearance, and increase the size of the buttons.

Figure 45: Open Toolbars Tab

To Add a New Toolbar
1. Select the Toolbars tab.

2. Click New.

The New Toolbar dialog box appears.

Figure 46: New Toolbar Dialog Box

3. Enter a name for the new toolbar and click OK.

4. The new toolbar will appear in the corner of the screen.

5. Go to the Commands tab.

6. Drag any button under the Buttons section on the right side of the Commands
tab to the new toolbar as desired.

Project Menu

67

PROJECT MENU
The Project menu comprises the following menu options:

ADD SOURCE
Use the Add Source command to add a data source to a project.

To Add a Data Source to a Project

• Select Project>Add Source

-or-

Select Add>Source from the Component Explorer’s context menu.

If you want to See
Create a new data source Add Source on page 67

Create a new destination Add Destination on page 68

Create a new map Add Map on page 69

Create a new logic tree Add Logic Tree on page 70

Add a new script module to your project Add Script Module on page 72

Invoke a series of wizards with which to create destinations and Transall
tables

Wizards on page 73

Synchronize all data sources and links in a project Synchronize on page 81

Compile a version of the Transall Application for debugging Compile on page 85

Use this command to go to the next error in a script Next Error on page 85

Use this command to go to a previous error in a script Previous Error on page 85

Customize the Transall default settings Project Settings on page 85

Chapter 5 – Transall Editor Menu Options

68

The Add Source dialog displays.

Figure 47: Add Source Dialog

Refer to Creating Sources and Destinations on page 104 for an explanation of
the properties available in this dialog box and the complete steps for creating a
data source.

ADD DESTINATION
Use the Add Destination command to add a destination to a project.

To Add a Destination to a Project

• Select Project>Add Destination

-or-

Select Add>Destination from the Component Explorer’s context menu.

Project Menu

69

The Add Destination dialog displays. The properties in this dialog box are
identical to the Add Source dialog.

Figure 48: Add Destination Dialog

The steps for creating a destination are identical to the steps for creating a data
source. Refer to Creating Sources and Destinations on page 104 for the
complete steps for creating a destination.

ADD MAP
Use the Add Map command to create a new map.

To Add a Map to a Project

• Select Project>Add Map

-or-

Select Add>Map from the Component Explorer’s context menu.

Chapter 5 – Transall Editor Menu Options

70

The Add Map dialog displays.

Figure 49: Add Map Dialog

Refer to Working with Maps on page 249 for the complete instructions on how
to create a map.

ADD LOGIC TREE
Use the Add LogicTree command to create a new Logic Tree.

To Add a Logic Tree to a Project
1. Select Project>Add Logic Tree

-or-

Select Add>Logic Tree from the Component Explorer’s context menu.

Project Menu

71

The Add Logic Tree dialog displays.

Figure 50: Add Logic Tree Dialog

2. Enter a name for the new Logic Tree.

3. Select the Standard type and press OK.

The Transall Editor displays the LogicTree Assistant for the new Logic Tree and
opens the Logic control bar that contains a set of icons.

Figure 51: Logic Tree Assistant

Refer to Adding a Logic Tree on page 269 for a complete description of this
screen and instructions on how to build a logic tree.

Chapter 5 – Transall Editor Menu Options

72

ADD SCRIPT MODULE
Use the Add Script Module command to a project.

To Add a Script Module to a Project
1. Select Project>Add Script Module

-or-

Select Add>Script Module from the Component Explorer’s context menu.

The Add Script Module dialog displays.

Figure 52: Add Script Module

2. Enter a name for the new script module.

3. Select the Standard type and press OK.

The Transall Editor opens the Script Module Assistant for the new Script Module in
the workspace area. By default a new Script Module’s Script Module Assistant
presents the Module’s Declarations section.

Figure 53: Script Module Assistant

Project Menu

73

Refer to Creating a Script Module on page 320 for complete instructions on how to
code the Declarations section, add/edit a script, and delete a script.

WIZARDS
The Wizards command opens the Transall Wizards dialog box which provides four
separate wizards with which to create destinations and Transall tables.

To Open the Transall Wizards Dialog Box

• Select Project>Wizards

The Transall Wizards dialog box opens.

Figure 54: Wizards Dialog

XML to Docuflex
Use the XML to Docuflex wizard to create a docuflex destination from an XML Plus
data source.

Use this Wizard To
XML to Docuflex Create a Docuflex Destination from an XML Plus source

Flat File Wizard Create a flat file destination from a flat file source

Import Table Layout Create an internal Transall table based on an external table layout

VRF to XML Plus Create an XML Plus destination from a Documaker FP Plus VRF destination

Chapter 5 – Transall Editor Menu Options

74

To Create a Docuflex Destination from an XML Plus Source
Before you use this wizard, you must create an XML Plus data source. See Add
Source on page 67 and Creating Sources and Destinations on page 104 for the
complete steps to create a data source.

1. In the Transall Projects dialog box, select “XML to Docuflex” and click OK.

The Destination Creation wizard opens:

Figure 55: XML PLUS Source - Docuflex Destination Wizard

2. Highlight an XML source in the Source list.

3. Type in a name for the Docuflex destination.

4. Click to select a file name for the Docuflex destination.

5. Click Finish.

Project Menu

75

The wizard creates the Docuflex destination, maps, and logic tree to populate
destination from the XML source.

Figure 56: Docuflex Destination and Maps

Flat File Wizard
Use the Flat File Wizard to create a flat file destination from a flat file source.

To Create a Flat File Destination from a Flat File Source
Before you use this wizard, make sure that you have already created a Flat File data
source.
See Add Source on page 67 and Creating Sources and Destinations on page 104 for
the complete steps for creating a data source.

1. In the Transall Projects dialog box, select “Flat File Wizard” and click OK.

Chapter 5 – Transall Editor Menu Options

76

The Destination Creation wizard opens:

Figure 57: Flat File Destination Wizard

2. Highlight a flat file source in the Source list.

3. Type in a name for the flat file destination.

4. Click to select a file name for the flat file destination.

5. Select the Delimited or Fixed radio button.

6. Click Finish.

The wizard creates the destination, maps, and logic tree to populate destination
from the XML source.

Import Table Layout
Use the Import Table Layout wizard to create an internal Transall table based on
an external table layout.

To Create an Internal Transall Table Based on an External Table Layout
1. In the Transall Projects dialog box, select “Import Table Layout” and click OK.

Project Menu

77

The Table Import wizard opens:

Figure 58: Locate and Connect to an ODBC Data Source

2. Click the Connect button to locate and select an ODBC data source.

3. Click the Next button.

The following screen appears:

Figure 59: Select the Tables and Columns to Import from the Data Source

4. Expand the Tables folder and select the tables and columns that you want to
import from the data source.

5. Click the Next button.

Chapter 5 – Transall Editor Menu Options

78

The following screen appears:

Figure 60: Display Warning Messages During the Import

6. Leave the Yes radio button checked and click the Next button.

A summary screen showing your choices appears:

Figure 61: Summary Screen

7. Click the Finish button to start the import.

Project Menu

79

The Database Assistant appears containing the newly imported tables and
columns:

Figure 62: Database Assistant with Imported Tables and Columns

Refer to Working with the Transall Database on page 259 for a complete
description of how to work with the components in a Transall database.

VRF to XML Plus
Use the VRF to XML Plus wizard to create an XML Plus destination from a
Documaker FP Plus VRF destination.

To Create an XML Plus Destination from a Documaker FP Plus (VRF)
Destination
Before you use this wizard, you must create a Documaker FP Plus (VRF)
destination. See Add Destination on page 68 and Creating Sources and Destinations
on page 104 to learn the complete steps for creating a data destination.

1. In the Transall Projects dialog box, select “VRF to XML Plus” and click OK.

Chapter 5 – Transall Editor Menu Options

80

The Destination Creation wizard opens:

Figure 63: VDR - CML Plus Destination Wizard

2. Highlight a VDR source in the Source list.

3. Type in a name for the XML Plus destination.

4. Click to select a file name for the XML Plus destination.

5. Click Finish.

The wizard creates the XML Plus destination and displays it in the XML Plus
Assistant.

Figure 64: XML Plus Assistant

Project Menu

81

Refer to XML Plus Data Source on page 205 for a complete explanation of how
to work with XML Plus.

SYNCHRONIZE
Use the Synchronize menu items to synchronize/view all linked data sources and
other linked components in a project.
Links allow data sources and other components to be shared between projects.
Before you can use the commands under this menu you must first create the links
using the File>Share command.
For further information on using the File>Share command, refer to Share on page
46.
For a comprehensive overview of project sharing, refer to Project Sharing Details
on page 331.

Data Sources
Use the Data Sources command to synchronize all linked data sources.

To Synchronize Data Sources

• Select Project>Synchronize>Data Sources

All data sources in the shared project are synchronized and the results are
displayed in the Output Bar’s Synchronize tab.

Links
Use the Links command to synchronize all links in the shared projects.

To Synchronize Links

• Select Project>Synchronize>Links

All existing links in the shared project are synchronized and the results are
displayed in the Output Bar’s Synchronize tab.

Use If you want to
Data Sources Synchronize all linked data sources

Links Synchronize all links

View Links View, update, and synchronize a link

View Queries View all queries in the linked project(s) and synchronize the data
sources or destinations containing the queries

DMG Report Determine which Documanage documents will supply link
requirements.

Chapter 5 – Transall Editor Menu Options

82

View Links
Use the View Links command to view, open a source project and edit any linked
components it contains, and synchronize all linked data sources.

To View Links

• Select Project>Synchronize>View Links

The Links dialog box opens. The Links dialog box not only displays all linked
components in the current project but it also lets you synchronize and edit
individual links.

Figure 65: Display Links in Current Project

To Edit a Link
Linked components can still be edited in the source project. The Edit Link button
allows you to absorb these changes to the source project into the target project.

1. Open the source project, make your changes, and save the project.

2. Open the target project containing the links to the source project.

3. Open the Links dialog box using Project>Synchronize>View Links.

4. Click on a link and select Edit Link.

To Synchronize a Link
1. Click on an item in the list.

2. Select Synchronize.

The selected link will be synchronized and the results displayed in the Output
Bar’s Synchronize tab.

Project Menu

83

The Select Link Directory box opens. This box shows the directory where the
source project is located.

Figure 66: Display Source Project

3. Select the source project in the File name: box and select Open. A message box
appears and ask you to confirm replacing the current linked project with the
updated project.

4. Select Yes to make the change.

View Queries
Use the View Queries command View all queries in the linked project(s) and
synchronize the data sources or destinations containing the queries

To View Queries
Use the Project>Synchronize>View Queries command to view any queries
in a linked project and synchronize the data source or destination containing
the queries. If the shared projects do not contain any queries then this menu
item will be grayed out.

• Select Project>Synchronize>View Queries.

Chapter 5 – Transall Editor Menu Options

84

The Query Synchronize dialog box appears. This box lists all existing queries
within the shared projects.

Figure 67: Queries within Shared Projects

To Synchronize a Link
1. Highlight a link in the list.

2. Select Synchronize.

The selected link will be synchronized and the results displayed in the Output
Bar’s Synchronize tab.

DMG Report
Use the DMG Report command to determine which Documanage documents will
supply link requirements.

To Check for Documanage Links
The DMG Report indicates which Documanage documents will supply link
requirements.
This menu item only appears if you have checked the “Enable Documanage
Interface” in the Documanage tab under Tools>Options.

• Select Project>Synchronize>DMG Report

The Transall Editor checks for Documanage links and displays the results in the
Output Bar’s Synchronize tab.

Project Menu

85

COMPILE
Use the Compile command to produce a version of the Transall Application for
debugging.

To Compile a Project

• Select Project>Compile

-or-

Press F7.

The results will be displayed in the Output Bar’s Build tab.
Refer to Running a Transall Application in Debug Mode on page 301 for further
details on creating a debugging version of the open project’s Transall Application.

NEXT ERROR
Use this command to go to the next error in a script.

PREVIOUS ERROR
Use this command to go back to a previous error in a script.

PROJECT SETTINGS
Use the Project Settings command to open the Project Settings dialog box. This
dialog box allows you to customize the default settings of Transall.

To Specify Project Settings

• Select Project>project Settings

Chapter 5 – Transall Editor Menu Options

86

The Project Settings dialog displays.

Figure 68: Project Settings Dialog Box

The Project Settings dialog box contains five tabs:

• General - Specifies the type of build and directories for the ancillary files.

• Compile - Specifies how the Transall Editor produces the Transall
Application’s executable file and other auxiliary files.

• Register - Specifies how the Transall Editor registers the Transall
Application’s executable file in the Windows Registry.

• Debug - Specifies the debug settings for a debug version of the Transall
Application.

• Locale - Specifies the major language of your geographical region and
whether to use the default Windows formatting symbols for currency, dates,
and times.

Refer to Using the Project Settings Dialog and Tabs on page 287 for a complete
description of the contents of each of these tabs.

Debug Menu

87

DEBUG MENU
The Debug menu comprises the following menu options:

For further information on the Transall Debug process, refer to Running a Transall
Application in Debug Mode on page 301.

GO
Use the Go command to start the debugging utility.

To Start Debugging

• Select Debug>Go.

-or-

Click in the Debug Toolbar.

-or-

Press F5.

For a detailed description of the Debugging process, refer to Operating Transall
under Debugging Control on page 303.

STOP DEBUGGING
Use the Stop command to cease debugging your project.

To Stop Debugging

• Select Debug>Stop Debugging.

-or-

Click in the Debug Toolbar.

If you want to See
Begin debugging your document Go on page 87

Cease debugging your document Stop Debugging on page 87

Pause debugging at the current point Break on page 88

Process the current member and stop at the next member, regardless of level Step Into on page 88

Process all the children of the current member and stop at the next member of the same
level (i.e., sibling)

Step Over on page 88

Run the debugger until it reaches the point in the source code where the cursor is set. Run to Cursor on page 89

Set/Remove a breakpoint Toggle Breakpoint on page 89

Clear any and all breakpoints Clear All Breakpoints on page 89

Locate a specific line number in a script. External Runtime Error on page 90

Chapter 5 – Transall Editor Menu Options

88

-or-

Press CTRL + F5.

BREAK
Use the Break command to pause the debugging routine at the current point.

To Demand a Debugging Break

• Select Debug>Break.

-or-

Click in the Debug Toolbar.

In the open source code window, a yellow arrow will point to the line where the
debugging routine left off.

STEP INTO
Use the Step Into command to continue viewing the debugging process after the
debugger has reached the initial breakpoint. If the next statement calls another
routine within the Transall Application, that routine’s source code is opened and
execution continues to the first statement in that routine.

To Step Into
1 Select Debug>Step Into.

-or-

Click in the Debug Toolbar.

-or-

Press F8.

3. Continue clicking the icon to process each additional statement.

STEP OVER
Use the Step Over command to continue viewing the debugging process after the
debugger has reached the initial breakpoint. If the next statement calls another
routine within the Transall Application, execution pauses at the next statement in the
calling routine after the calling statement.

To Step Over
1 Select Debug>Step Over.

-or-

Debug Menu

89

Click in the Debug Toolbar.

-or-

Press CTRL + F8.

4. Continue clicking the icon to process additional statements.

RUN TO CURSOR
Use the Run to Cursor command to run the debugger until it reaches the point in
the source code where the cursor is set.

TOGGLE BREAKPOINT
Use the Toggle Breakpoint command to place breakpoints manually on a selected
source code or LogicTree statement. This is an effective troubleshooting mechanism
because you can place a breakpoint on or near a statement that’s causing an error
message. The debugger then steps through the suspect statement so you can see the
exact cause of the error.
For further information, refer to Breakpoints in Transall on page 302.

To Toggle a Breakpoint
1. Open the Component Explorer.

2. Open a Script Module or LogicTree component.

3. When the pertinent Assistant editor opens, set the cursor at the desired statement.

4. Select Debug>Toggle Breakpoint.
-or-

Click in the Debug Toolbar.

-or-

Press CTRL + F9.

A red dot will be placed at the start of the statement.

Repeat the above steps to remove an existing breakpoint.

CLEAR ALL BREAKPOINTS
Use the Clear All Breakpoints command to remove the breakpoints from all of the
components in your Component Explorer.

To Clear All Breakpoints

• Select Debug>Clear All Breakpoints.

Transall removes all breakpoints from all statements.

Chapter 5 – Transall Editor Menu Options

90

EXTERNAL RUNTIME ERROR
Use the External Runtime Error command to locate a specific script line number
in the open window.

To Invoke External Runtime Error
1. Select Debug>External Runtime Error.

The Find Error Line dialog appears:

Figure 69: Find Error Line Dialog Box

2. Enter a line number and select OK.

This will bring you to the selected line in the open window.

Tools Menu

91

TOOLS MENU
The Tools menu contains a single menu item, Options.

OPTIONS
Select the Tools>Options command to open the Options dialog box.

Figure 70: Tools>Options Dialog Box

Using the Options Dialog and Views
The Options dialog box contains four tabs. You complete an option by specifying
general operating parameters under these tabs.

To Use the Options Tab

• Do one of the following:

To See
Specify the features that automatically open upon first opening the Transall Editor and to
select the highlight color for the Printstream Assistant.

Editor

Create and maintain formats to apply to destination fields Formats

Create and maintain separators for delimiting records and fields. Separators

Set and maintain Documanage interface settings. Documanage

Chapter 5 – Transall Editor Menu Options

92

To Save or Close the Options Dialog

• Do one of the following:

Using the Editor Tab
Use the Editor tab to choose which features should automatically open/display when
the Transall Editor is first opened. It also allows you to change the color to use to
highlight items in the Printstream Assistant.

To Display the Editor Tab

• If the Editor tab isn’t already showing in the Options dialog box, click on the
Editor tab.

The Editor tab displays.

Figure 71: Display the Editor Tab

To Specify which Features will Automatically Appear when the Transall
Editor Starts

• Remove the checkmarks next to the items that you DO NOT want to
automatically appear when the Transall Editor opens. By default, the four items
in this list are checked.

To Change the Color of Highlighted Text in the PrintStream Assistant

1. Click to open the Color dialog box. The default color is yellow

To Do this
Apply the specifications you’ve provided and return to the Transall Editor Click OK

Return to the Transall Editor without applying the specifications you’ve provided Click Cancel

Tools Menu

93

2. Select a color from the color grid.

3. Click OK to apply the change.

Using the Formats Tab
The Formats tab provides a prepopulated set of field formats for use in the fields of
Destination Records and Queries. Use the Formats Tab to add, edit, delete field
formats that your Transall Application requires.

To Display the Formats Tab

• Click Formats on the Options dialog box.

The Formats tab displays.

Figure 72: Display the Formats Tab

To Create a New Field Format
1. Click New.

The text “UserFormat” will appear in the Name and String text boxes beneath
the list of field formats. The type in the “Type” pull down list will default to
“Number”.

2. Enter the new name, string, and type in their respective fields.

3. Click OK. The Options dialog box closes.

4. Select Tools>Option>Formats. The new field format appears at the bottom of
the list.

New or edited field formats instantly become available in the choice lists in the
pertinent Destination Record and Query properties shown in the Component
Inspector.

Chapter 5 – Transall Editor Menu Options

94

To Delete a Field Format
1. Click on the row containing the field format.

2. Click Delete. The field format is deleted from the list.

3. Click OK. The Options dialog box closes.

Using the Separators Tab
The Separators tab provides a prepopulated set of record separators for use in the
fields of Destination Records and Queries. Use the Separators Tab to add, edit, delete
record separators that your Transall Application requires.

To Display the Separators Tab

• Click the Separators tab on the Options dialog box.

The Separators tab displays.

Figure 73: Display the Separators Tab

To Create a New Record Separators
1. Click New.

The text “Separator” will appear in the Name and String text boxes beneath the
list of record separators. The type under the “Type” pull down list will default to
“Field”.

2. Enter the new name, string, and type in their respective fields.

3. Click OK. The Options dialog box closes.

4. Select Tools>Option>Separators. The new record separator appears at the
bottom of the list.

Tools Menu

95

New or edited separators instantly become available in the choice lists in the
pertinent field properties shown in the Component Inspector for Record and
Query subcomponents of Sources and Destinations.

To Delete a Record Separators
1. Click on the row containing the record separator.

2. Click Delete. The row is deleted from the list.

3. Click OK. The Options dialog box closes.

Using the Documanage Tab
Use the Documanage Tab to set and maintain Documanage interface settings.
Note that if you enable the Documanage interface using the Tools>Options>
Documange command, you’ll see an additional menu item for Documanage under
the following menu items:

• File>Open

• File>Save

• File>Save As

This additional menu item allows to open/save a project file or a Documanage file:

Figure 74: Documange Menu Item

To Display the Documanage Tab

• Click the Documanage tab on the Options dialog box.

Chapter 5 – Transall Editor Menu Options

96

The Documanage tab displays.

Figure 75: Display the Documanage Tab

WINDOW MENU
The Window menu comprises the following menu options:

NEW WINDOW
Use the New Window command to open a duplicate of the current window.

To Open a New Window

• Select Window>New Window.

A duplicate of the current window will open in front of the current window.

If you want to See
Open a duplicate of the current window New Window on page 96

Close the active window Close on page 97

Close all windows Close All on page 97

Place windows in a overlapping sequence Cascade on page 97

Place windows next to each other from left to right Tile on page 97

Line up the minimized windows along the bottom of the screen Arrange Icons on page 97

Window Menu

97

CLOSE
Use the Close command to close the window that’s currently active (e.g., Layout,
Preview, Report, Rule, or Source).

To Close a Window

• Select Window>Close.

CLOSE ALL
Use the Close All command to close all open windows (e.g., Layout, Preview,
Report, Rule, and Source).

To Close All Windows

• Select Window>Close All.

CASCADE
Use the Cascade command to stagger the display of the windows in an overlapping
manner. Each window is slightly offset so you can see the window beneath it.

To Cascade Windows

• Select Window>Cascade.

Transall resizes the windows and stacks them on top of each other.

TILE
Use the Tile command to place the windows side by side from top to bottom.
Transall takes up to three windows, stretches them so they’re wider than they are tall,
and uses all available space not taken up by the various windows.

To Tile Horizontally All Open Windows

• Select WIndow>Tile.

Transall stretches the windows horizontally and stacks them from top to bottom.

ARRANGE ICONS
Use the Arrange Icons command to line up all minimized windows along the
bottom of the screen.

To Arrange Icons
1. Minimize all open windows in the Transall Editor.

2. Select Window>Arrange Icons.

The windows will be lined up in a row across the bottom of the screen.

Chapter 5 – Transall Editor Menu Options

98

HELP MENU
The Help menu comprises the following menu options:

HELP
Use the Help command to view the compiled HTML help system for the Transall
Editor.

To View the Help System
1 Select Help

-or-

Press F1.

The Transall Editor help system displays.

3. Use the navigation buttons to explore the help system.

ABOUT TRANSALL EDITOR
Use the About Transall Editor command to view the copyright information and the
current version and release number.

To View the About Box
1. Select Help>About Transall Editor

The About Transall Editor dialog displays.

2. Click More for additional copyright information or OK to return to the Transall
Editor.

99

Chapter 6- Working with Sources and Destinations

Working with Sources and Destinations
This chapter introduces the roles and features of Source and Destination
components, including their Record subcomponents.
In your Transall project you create components called Sources and Destinations to
describe files, databases, and other applications that provide data to, or receive data
from, the Transall Application that you want to produce.
Each Source and Destination component must contain at least one Record
subcomponent. Each Record subcomponent contains a list of field descriptions.
Each field description provides the characteristics of a piece of data, such as whether
the data represents a number, datetime, or series of characters, the field’s size in
bytes, and so on.
After creating the appropriate Sources and Destinations, you create Map components
that describe how the Transall Application moves data from sources to destinations.
For more information about Map components, see Working with Maps on page 249.
Although the data values that the Transall Application places into a Destination
Record’s fields typically originate from fields in Source records, they can also
originate from components in the Transall Application's Transall Database, or as
return values from functions coded in Transall Script Modules.
For more information about the components in the Transall Database, see Working
with the Transall Database on page 259. For more information about coding a Script
Module, see Working with Transall Scripts and Script Modules on page 319.

ABOUT SOURCES AND DESTINATIONS
A Source and a Destination are components that identify either a file or an ODBC
data connection.
A Source component describes an external resource from which the Transall
Application obtains data and describes how that data is organized.
A Destination component describes an external resource where the Transall
Application adds, updates, or deletes data and describes how that data is organized.

New Export Capabilities
Transall exports text files from many of its Assistants. The Export context menu
item is available wherever exporting is supported and it presents the File Export
dialog.

Chapter 6 – Working with Sources and Destinations

100

Figure 76: File Export Dialog Box

The layouts available are enabled based on the context. For comma separated value
output (CSV), the format is FieldName, DataType (unless a map is being exported),
then its MapField= Expression. For COBOL copybook exports, you can indicate the
start level number and the increment amount.

Enhanced Read Flexibility
For Sources with multiple records, you can specify the order in which they’re read
for matching on reading a next record. The Change Read Order menu item displays
the Set Read Order dialog.

Figure 77: Set Read Order Dialog Box

Use the arrow keys to move the highlighted record. The Assistant won’t visually
reflect the changed read order.

File-Based Sources and Destinations
A Source or Destination that refers to a file contains the information that the Transall
Application requires to work with that file. For instance, when you create a new file-
based Source or Destination, you must provide its location or path.

101

Transall allows you to work with simple to very complex file organizations. A
Source or Destination can refer to a file that:

• Contains data with fixed-length fields

• Contains data with variable-length fields delimited by a specified character

• COBOL defined data including support for OCCURS and REDEFINES

• Contains “Well Formed” XML

While the Transall Application runs, the file referenced by the Source or Destination
must have these properties:

• The file must exist, or if used for writing, the file can be created.

• The file must be available to the computer where the Transall Application runs.

ODBC-Compliant Sources and Destinations
A Source or Destination can refer to an ODBC data source, which must conform to
the Microsoft Open Database Connectivity standard for application interoperabilit

DETAILS ON FILES

About Record Subcomponents
Each Transall Application is designed to read and write record-oriented data. That
is, it expects to read and write “chunks” of data structured as a series of fields that
have a predictable order.
A data record contains a series of data values. Each data record contains information
about an entity that is of interest to your application, such as employees, business
transactions, and so on.
Each data value occupies a portion of the data record called a field. Each field in a
record can contain a value that has a set of properties, such as datatype, size in bytes,
and so on. A description of a field defines the set of properties that allow the Transall
Application to work with a value stored in that field.
To represent the set of fields in a data record that the Transall Application works
with, a file-based Source or Destination must contain at least one Record
subcomponent. Each Record subcomponent contains a list of field descriptions
A file-based Source or Destination can have more than one Record subcomponent
defined. For instance, you should create more than one Record subcomponent in a
Source when the actual data source provides record-oriented data than can conform
to more than one possible set of fields. (i.e., Record Types)

Note Transall requires ODBC Level 2 and later.

Chapter 6 – Working with Sources and Destinations

102

Defining a Record’s Identifier Field
When a Source contains more than one Record subcomponent, you can use each
Record’s Identifier property to indicate which field contains the value that identifies
a given data record’s structure. Your Transall Application can utilize this feature to
perform record-identifier-based control-break processing. This should be used when
the data records obtained from a Source might vary in structure from record to
record, and the Transall Application cannot predict that variance based on the data
obtained from previous data records.
For example, a Source might provide a stream of fixed-length records with two
fields, RECORD-TYPE and EXPIRATION TIME, but the EXPIRATION-TIME
field can contain either a datetime value or a string value depending upon the
RECORD-TYPE field’s value.
Your Transall Application can use this information when executing a Logic Tree that
contains a Walk ControlBreak instruction sequence. In this case, as the Logic Tree’s
processing obtains the next record from the Source, the correct ControlBreak
instructions are triggered based on the value in the RECORD-TYPE field and the
field in question is processed appropriately.
Nested after the ControlBreak instruction can be one or more Condition instructions
for handling the data record based on the value of its RECORD-TYPE field. For
instance, if the condition RECORD-TYPE field contains “T”, the next Logic Tree
instruction should perform a Map instruction that pertains to the Source Record
whose Identifier property contains RECORD-TYPE and whose IdentifierValue
property contains “T”.

See the description of defining a ControlBreak instruction in Working with Logic
Trees on page 267.

Note If a Source has more than one Record subcomponent, but they describe a stream of
data records that follow a “master-and-detail” pattern, then a Logic Tree can process
those data records using field-based control-break processing. This is defined in the
Field(s) property of a ControlBreak instruction in a Logic Tree.

103

Data Types
In the internal workings of Transall there are eight native data types: Integer, Long,
String, DateTime, Double, Float, PNum, and UNum.

Using Format Options
Under the Formats tab of the Tools>Options dialog, the Transall Editor provides a
pre-populated set of field formats for use in the fields of Destination Records and
Queries. If the pre-populated list does not contain the field formats that your Transall
Application requires, you can add, edit, or delete field formats.
Figure 78 on page 103 shows the display of the Formats tab.

Figure 78: Formats for Destination Fields

Integer 16 Bit signed integer.

Long 32 Bit signed integer.

String up to 2GB in length.

DateTi
me

DateTime structure in the form of CCYY/MM/
DD.HH.MI.SS.MMMMMMMMM

Double 64-bit (8-byte) floating-point number (i.e., double precision)

Float 32-bit (4-byte) floating-point number (i.e., single precision) or less
precise version of double

PNum Packed Decimal - contain a number (acts like strings only unprintable
and packed)

UNum UnPacked Decimal - contain a number (acts like string or regular
printable recorders and unpacked)

Chapter 6 – Working with Sources and Destinations

104

New or edited field formats instantly become available in the choice lists in the
pertinent Destination Record and Query properties shown in the Component
Inspector.

Using Separator Options
Under the Separators tab of the Tools>Options dialog, the Transall Editor provides
a pre-populated set of record separators. If the pre-populated list does not contain the
separators that your Transall Application requires, you can add, edit, or delete record
separators.
Figure 79 on page 104 shows the display of the Separators tab.

Figure 79: Separators for Field Descriptions

New or edited separators instantly become available in the choice lists in the
pertinent field properties shown in the Component Inspector for Record and Query
subcomponents of Sources and Destinations.

CREATING SOURCES AND DESTINATIONS
The Transall Editor presents the same user interface for creating all Source and
Destination components. In the descriptions that follow, we present examples of
creating a Source; you can use the same actions to create a Destination.

To Create Sources and Destinations
1. Select Project>Add Source.

Creating Sources and Destinations

105

The Transall Editor displays the Add Source dialog, as shown in Figure 80 on
page 105.

Figure 80: Add Source Dialog

2. Type a name for the new Source.

Hint To complete the next step, you must already know whether the new Source refers to a
file or to an ODBC data source. In other words, before creating a Source, you must
already know whether your Transall Application expects to obtain this Source’s data
records from a file or ODBC data source.

3. In the Source Properties group box, click the icon representing the type of
Source:

You can choose from the following Source types:

• COBOL File: The data values in each record correspond to fields defined
in a separate COBOL copybook file; otherwise, this will behave like a fixed
file.

• Delimited File: The length of each record is unpredictable and, therefore,
the Transall Application expects to find a separator character between the
data values in each file record.

• Fixed File: Each record is of a fixed length; multiple records definitions are
supported, with a predictable delimiter, or separator, character between
those records. No separator is also supported.

Chapter 6 – Working with Sources and Destinations

106

• PPS File (PPS): The file’s data records are organized and formatted as a
PPS file. (See your Documaker Workstation/PPS documentation for more
information about the characteristics of this file.)

• *Generic File (Scripted): The data is in a format that isn’t supported by
existing File, XML, or SQL options. Scripted data sources and destinations
provide a framework of empty script subroutines, where you’ll insert script
to perform various operations.

• Printstream: The data is in a print file format, such as IBM AFP, HP PCL,
Xerox Metacode, or text.

• SQL Data Source: The data is accessed using an ODBC driver.

• VSAM File: The data is in a file layout conforming to IBM's Virtual Storage
Access Method organization.

• *XML: The Transall Application allows low-level access to well-formed
XML files.

• XML Plus: The Transall Application interacts with XML sources very
much like the way it interacts with multi-record file data sources.

You can choose from the following Destination types:

• COBOL File: Same as for a Source.

• Delimited File: Same as for a Source.

• Docuflex File: The data is organized and formatted for use in creating a
Docuflex project for document publication.

• *Documaker FP File (VRF): The file’s data records are organized and
formatted as a Documaker VRF file. (See your Documaker documentation
for more information about the characteristics of this file.)

• Documaker FP Plus (VRF): The objective of the FP Plus data destination
is to let the Transall developer concentrate on the business logic for selecting
forms and tags that are required for various business scenarios versis
thinking about making calls to the Documaker VDR API.

• Fixed File: Same as for a Source.

• *Generic File (Scripted): Same as for a Source.

• SQL Data Source: Same as for a Source.

• VSAM File: Same as for a Source.

• XML: The Transall Application interacts via a hierarchy of records that are
setup in the XML destination.

Tip Sources and Destinations preceded by an asterisk are available by enabling the Show
All check box.

4. In the File/Data Source Name text box, type (or browse for) a file path. When
the Transall Application opens this Source to obtain data records, it uses this file
by default.

Creating Sources and Destinations

107

You can set this property by two alternate methods:

• After you create the Source, type (or browse for) a file path by editing the
FileName property in the Component Inspector control bar.

• If the file path for this Source is subject to change, or cannot be specified
until the Transall Application’s run-time, use the built-in SetFileName
Event so that the Transall Application determines the file path as it runs.

5. Click OK to create the Source.

Because you can create a wide variety of Sources and Destinations, this guide
provides separate topics for each type:

If you chose See:
Sources:

COBOL File Describing a COBOL File Source on page 110

Delimited File Describing a Delimited File Source on page 110

Fixed File Describing a Fixed File Source on page 108

Oracle File (PPS) Describing a PPS File Source on page 113

Generic File (Scripted) Scripted Assistant on page 201

SQL Data Source Describing an ODBC-Based Source on page 142

VSAM File Transall Gateway on page 385

XML Setting up an Event-based XML Source on page 217

XML Plus XML Plus Source on page 212

Destinations:
COBOL File Describing a COBOL File Source on page 110

Delimited File Describing a Delimited File Source on page 110

Docuflex File Setting up a Docuflex File Destination on page 169

Documaker FP File (VRF) FP Plus Destination on page 177

Documaker FP Plus (VRF) FP Plus Destination on page 177

Fixed File Describing a Fixed File Source on page 108

Generic File (Scripted) Scripted Data Sources and Destinations on page 201

SQL Data Source Describing an ODBC-Based Source on page 142

VSAM File Transall Gateway on page 385

XML XML Data Destinations on page 229

Chapter 6 – Working with Sources and Destinations

108

DESCRIBING A FIXED FILE SOURCE

Cells for describing a field in the
selected Record subcomponent

Source component’s
Assistant

Tab for selected
Record subcomponent

After you complete the Add Source dialog, the Transall Editor opens the Source’s
File Assistant as shown in Figure 81 on page 108.

Figure 81: File Assistant for Fixed File Source

Next, you must enter descriptions of the fields for values available in the file’s data
records.
As shown in Figure 81 on page 108, you do so by adding or editing field descriptions
in the Source’s selected Record subcomponent using a spreadsheet-style interface.
You must enter a field Name, Usage data type or format, and Size as a length in bytes
for each field that you add to a Fixed File Source Record. The Transall Editor
automatically updates the Offset column for each field description that you add.
Type or select a Usage data type for the new field. Presently, the Usage cell can only
contain a COBOL data type.
After you finish adding field descriptions for the selected Source Record, and after
you finish editing each new field’s component properties in the Component
Inspector, you can close the File Assistant.

Adding a Record Subcomponent
To add another Record subcomponent in a Source, select the Resource>Record
Add menu command, or right-click the mouse anywhere within the File Assistant’s
Record List view and select the Add Record command from the pop-up menu.
Adding another Record subcomponent to the Source causes a new row to show in
the record list for the source. You can now add new field descriptions for the new
Record in the Contents view.

Creating Sources and Destinations

109

Changing the Name of a Record Subcomponent
To change the name of a Record subcomponent in a Source or a Destination, click
on the Record’s name in the File Assistant’s Record List view, then edit the Record’s
Name property in the Component Inspector.

Copying Field Descriptions Into an Empty Record
Subcomponent
You can conveniently add field descriptions in an empty Record subcomponent by
copying them from another Record in any Source or Destination in the open project.
To do so, select the Resource>Copy From menu command, or right-click the
mouse in the File Assistant’s Record List view and select the Copy From command
from the pop-up menu. In the dialog that appears, use the + and - tree node controls
to display the names of the Record subcomponents for each Source or Destination in
the project. Select the name of the Record whose field descriptions you want to copy,
and press OK.

The Resource>Add From command is also available from the drop-down and pop-
up menus. It behaves like Copy From, but creates a new child record to act as the
destination.

Deleting a Record Subcomponent
To delete the selected Record subcomponent in a Source, select the
Resource>Record Delete menu command, or right-click the mouse on the record
name in the File Assistant’s Record List view and select the Record Delete
command from the pop-up menu.

Note If you copy field descriptions from a Source of a different kind, like copying from an
ODBC Source to a file Destination, the Transall Editor leaves default values in the
property cells for the new fields in the target Record. Edit the new field descriptions’
properties as needed.

Chapter 6 – Working with Sources and Destinations

110

DESCRIBING A DELIMITED FILE SOURCE
After you complete the Add Source dialog, the Transall Editor opens the File
Assistant as shown in Figure 82 on page 110.

Figure 82: File Assistant for Delimited File Source Component

For a Delimited File Source, in the selected Record subcomponent you can enter
only a Name property for each field. The Transall Editor automatically updates the
Field # column for each new field that you describe.
You can also edit the properties of the new Source in the Component Inspector. The
allowable values for this component’s properties are found in Delimited File on page
131 of this chapter.
After you finish adding field descriptions for the selected Source Record, and after
you finish editing each new field’s component properties in the Component
Inspector, you can close the File Assistant.

DESCRIBING A COBOL FILE SOURCE
After you complete the Add Source dialog, the Transall Editor opens the File
Assistant.
To add a set of field descriptions that correspond to an existing COBOL copybook
source file, select the Resource>Import Copybook menu command, or right-click
the mouse in the File Assistant’s Record List view and select the Import Copybook
command from the pop-up menu. In the Import Copybook dialog, you can browse
for a file to select.
After you specify a COBOL copybook source file, the Transall Editor automatically
scans the file’s COBOL source and adds field descriptions in the new Source’s
empty Record subcomponent based on the copybook file’s field definitions. The
Transall Editor adds one field in the Record subcomponent for each COBOL field
found in the copybook file.
For the entire COBOL record or structure, the Transall Editor creates one “root” field
in the Source’s Record whose Usage property is Group. For other group fields found
in the copybook file, the Transall Editor also sets the Usage property value to Group
in the corresponding Source Record’s group fields.

Creating Sources and Destinations

111

The Transall Editor sets a new field description’s Occurs property to a non-zero
value when its corresponding COBOL field is defined with an OCCURS clause.
For each field description that is imported into the Source Record, the Transall Editor
sets the value of the field’s Usage property to a value based on the copybook’s field
COBOL definitions and sets its Size property based on its COBOL field definition.
For example, assume that you are creating a Source for a file containing data records
whose fields correspond to the COBOL copybook shown in Figure 83 on page 111.

Figure 83: Sample COBOL Copybook

Note Transall requires a starting 01 group level to import copy books. If several 01 groups are
found, each is imported into a Transall record. Also note that Transall ignores “copy”
directives in the copybook being imported. To handle “copy” directives the Transall user
should assemble the copybook fragments in something like notepad before importing a
complete copybook.

 01 ACCT-REC-TYPE.
 10 SORT-INFO PIC X(46).
 10 JSG1-ACCT-REC-TYPE PIC X(03).
 10 JSG1-BAR-CODE.
 15 JSG1-INSERT-CODES PIC X(04).
 15 FILLER REDEFINES JSG1-INSERT-CODES.
 20 JSG1-BYTE-2 PIC X.
 20 JSG1-BYTE-3 PIC X.
 20 JSG1-BYTE-4 PIC X.
 20 JSG1-BYTE-5 PIC X.
 15 JSG1-ENVELOPE-NO PIC X(6).
 15 JSG1-FEEDER-TYPE PIC X.
 10 FILLER PIC X.
 :
 :
 01 ACTV-REC-TYPE.
 10 SORT-INFO PIC X(46).
 10 JSG5-ACTIVITY-RECORD-TYPE PIC X(03).
 10 JSG5-ACTIVITY-DESC1 PIC X(200).
 :
 :
 01 MPOL-REC-TYPE.
 10 SORT-INFO PIC X(46).
 10 JSG78-MPOL-RECORD-TYPE PIC X(03).
 10 JSG78-EXPIRE-POLICY-DESC PIC X(10).
 :
 :
 01 MSG-REC-TYPE.
 10 SORT-INFO PIC X(46).
 10 JSG-MESSAGE-RECORD-TYPE PIC X(03).
 :
 :
 01 POL-REC-TYPE.
 10 SORT-INFO PIC X(46).
 10 JSG4-POL-RECORD-TYPE PIC X(03).
 10 JSG4-POLICY-DESCRIPTION PIC X(147).
 :
 :

Chapter 6 – Working with Sources and Destinations

112

Figure 84 on page 112, shows the Assistant for the COBOL file Source component
after importing the COBOL copybook shown in Figure 83 on page 111. In the
figure, notice that the Transall Editor creates only one Record subcomponent that
contains all the imported field descriptions.

Figure 84: Group Fields Resulting From Importing Sample COBOL Copybook File

In certain cases, the Transall Editor creates a “container” field description in the
Source Record with a Usage property of Group, as follows:

• A root field represents the entire COBOL record; its name is the same as the
COBOL record name.

• Each COBOL field that defines groups of sub-fields.

As shown in Figure 84 on page 112, after the Transall Editor has populated the
COBOL file source’s Record in the File Assistant’s Record List view, you can view
the structure of any group or redefined fields that were added to the Record, as
follows:

• click on the + and - controls to show and hide any Group fields.

• click on a Group field name to view its member fields.

Figure 85 on page 113, shows the same COBOL file source’s File Assistant after
navigating to the fields contained in the root field named ACCT-REC-TYPE.

In COBOL copybook file:

In COBOL file Source component’s Record:

01 ACCT-REC-TYPE.
...
01 ACTV-REC-TYPE.
...
01 MPOL-REC-TYPE.
...
01 MSG-REC-TYPE.
...
01 POL-REC-TYPE.
...

GROUP fields in boldface type

Creating Sources and Destinations

113

Figure 85: Fields Contained in Root Group Field of Imported Sample COBOL Copybook

In the figure above, notice that:

• The name of each Group field appears in boldface.

• Redefined fields are underlined.

Note The name of a field that appears in boldface and is underlined corresponds to group of
fields that redefine another field.

After you finish viewing the populated field descriptions, you can close the File
Assistant.

DESCRIBING A PPS FILE SOURCE
After you complete the Add Source dialog, the Transall Editor opens the File
Assistant. For the record descriptions you can enter an Identifier Value. The
Identifier Value refers to the name of an image in the PPS export file. For the field
descriptions in a PPS File Source’s Record, you can enter only two properties: Name
and Tag Name. The Tag Name is a text field that is the name of a “tag” (or field
name) found in a PPS Form; the tag name identifies the name of a field used
elsewhere in the data record.
The Transall Editor automatically updates the Field# cell for each new field
description.

Note There are two special Identifier Values “PPS Session Header” and “PPS Form Header”
that represent the Data String identifying a data entry session and a PPS Form Selected
for data entry respectively. These special Identifier Value records must each have a field
name to receive PPS data named “PPS Session Data” and “PPS Form Header Data”
respectively.

Chapter 6 – Working with Sources and Destinations

114

REFERENCE FOR COMPONENT PROPERTIES - TRADITIONAL FILES
This section presents the allowable values for the unique properties for each kind of
traditional file Source and Destination component. These values can be viewed by
going to the Component Inspector, under the Properties tab, then find the properties
listed below. By clicking in the box to the right of the property, will select the word
and display a control, that when clicked on will display a drop down box, that will
show the subcomponent’s properties.

SOURCE PROPERTIES
There follows a list of the allowable values for the unique properties for each kind
of Source component.

Fixed File
Property Meaning
Access Controls the file access method. The valid choices are:

• Read - (default) If this is a new file (destination only), Transall will
create it with read access.

• Read Write - If this is a new file, Transall will create it with read
/ write access.

FileName Pathname for the file containing data records.
LockMode Controls the file access permission. The valid choices are:

• Write - (default) Transall will set the file’s access permission to
lock out other processes from writing to the file while Transall has
the file open for reading.

• Read - Transall will set the file’s access permission to lock out
other processes from reading the file while Transall has the file
open for reading.

• Read Write - Transall will set the file’s access permission to lock
out other processes from having any access to the file while
Transall has the file open for reading.

• Shared - Transall will NOT set the file’s access permission to lock
out other processes from having access to the file while Transall
has the file open for reading.

Mode Controls the file input access. The valid choices are:

• Input - (default) Transall will open the file for input access in
“cooked” or translated mode. In this compatibility mode, carriage-
return / line-feed combinations are converted to line-feed symbols.
This yields a common compatibility with UNIX file systems.

• Binary Input - Transall will open the file for input access in “raw”
or untranslated mode. In this mode, carriage-return / line-feed
combinations are NOT converted to line-feed symbols.

Reference for Component Properties - Traditional Files

115

OpenMode Controls the generation of logic to open a file. The valid choices are:

• Automatic - (default) Transall will automatically generate logic to
open this file for you.

• Manual -Transall will generate logic to open this file but will not
automatically call the logic. You must manually place a call to the
generated logic in your Transall Scripts or LogicTrees to have
Transall run the instructions that open this file.

You might want to select Manual if you need to have extra control
over when a file is opened by Transall. This may be the case if you have
a need to open and close a file several times during a Transall run. By
default, the Automatic open mode opens the file and holds the file
open for the life of the Transall run, closing the file when Transall is
ready to terminate.

Separator This is a reference to a Transall resource (set up under
Tools>Options>Separators) that is either a single character or a string
of characters that Transall will look for in the file to locate each data
record.

ByteOrder Controls the processing of binary data in the file. The valid choices are:

• Any - (default) Transall will assume any binary data being
accessed in this file is in the native binary format of the platform
Transall is running on.

• Little-Endian -Transall will assume any binary data being
accessed in this file is in little endian (least significant bits in)
format and Transall will perform any binary manipulation required
to process the data on the platform that Transall is operating on.
Note: Data on the WIN32 platform is Little Endian.

• Big-Endian -Transall will assume any binary data being accessed
in this file is in big endian (most significant bits in) format and
Transall will perform any binary manipulation required to process
the data on the platform that Transall is operating on.

Property Meaning

Chapter 6 – Working with Sources and Destinations

116

CharacterSet Controls the processing of string data in the file. The valid choices are:

• Any - (default) Transall will assume string data being accessed in
this file is in the native character set of the platform Transall is
running on.

• ASCII - Transall will assume string data being accessed in this file
is in the ASCII character set and Transall will perform any string
manipulation required to process the data on the platform that
Transall is operating on.

• EBCDIC - Transall will assume string data being accessed in this
file is in the EBCDIC character set and Transall will perform any
string manipulation required to process the data on the platform
that Transall is operating on.

Or

• Unicode encodings - UTF-8, UTF-16, UTF-16LE, UTF-16BE,
UCS-2, UCS-2LE, UCS-2BE, UCS-4, UTF-32, UCS-4LE, UTF-
32LE, UCS-4BE, UTF-32BE, UTS-6

• Windows code pages - W_CENTRAL_EUROPE,
W_CYRILLIC, W_LATIN1, W_GREEK, W_LATIN5,
W_HEBREW, W_ARABIC, W_BALTIC, W_VIETNAMESE,
W_THAI, W_JAPANESE, W_KOREAN, W_S_CHINESE,
W_T_CHINESE

• DOS code pages - D_USLATIN, D_ARABIC1, D_GREEK,
D_BALTIC, D_LATIN1, D_LATIN2, D_CYRILLIC,
D_TURKISH, D_LATIN1EURO, D_PORTUGUESE,
D_ICELANDIC, D_HEBREW, D_CANADIANFRENCH,
D_ARABIC, D_NORDIC, D_CYRILLICRUSSIAN,
D_GREEK2, D_THAI, D_ARABICASMO

• ISO code pages - ISO_8859_1, ISO_8859_2, ISO_8859_3,
ISO_8859_4, ISO_8859_5, ISO_8859_6, ISO_8859_7,
ISO_8859_8, ISO_8859_9, ISO_8859_10, ISO_8859_11,
ISO_8859_13, ISO_8859_14, ISO_8859_15, ISO_8859_16

• Other code pages - O_KOI8R, O_KOI8U, O_KOI8RU,
O_KOI8UNI, O_BIG5, O_GB12345, O_GB2312, O_JIS0201,
O_JIS0208, O_JIS0212, O_JOHAB, O_KSC5601, O_KSX1001,
O_WANSUNG, O_GB18030

Property Meaning

Reference for Component Properties - Traditional Files

117

• EBCDIC code pages - E_DFXDEFAULT, E_USCANADA,
E_LATIN5TURKISH, E_INTERNATIONAL, E_GREEK,
E_HEBREW, E_ROECELATIN2,
E_JAPANESEKATAKANA_EX, E_ARABIC,
E_KOREAN_EX, E_CYRILLIC_RUSSIAN,
E_LATIN1_EURO, E_CYRILLIC_S_EUROPE,
E_USCANADA_EURO, E_GERMANY_EURO,
E_DENMARKNORWAY_EURO,
E_FINLANDSWEDEN_EURO, E_ITALY_EURO,
E_SPANISH_EURO, E_UK_EURO, E_FRANCE_EURO,
E_INTL_EURO, E_ICELAND_EURO

Note: On the Unicode encodings, a suffix of LE means Little Endian
and BE means Big Endian and this refers to text storage. Refer to the
ByteOrder property for specifying the storage of binary numbers.

ErrorHandler Controls the processing of errors in the file. The valid choices are:

• Automatic - (default) Transall will automatically handle and
recover from errors. Transall will “throw” only critical errors that
must be “caught” via an On Error Resume Next type statement.

• Manual - Transall will ignore all errors and return errors to your
Scripts or LogicTrees for handling.

Property Meaning

Chapter 6 – Working with Sources and Destinations

118

Delimited File
Property Meaning
Access Controls the file access method. The valid choices are:

• Read - (default) If this is a new file, Transall will create it with read access.

• Read Write - If this is a new file, Transall will create it with read / write
access.

FieldDelimiter This is either a single character or a string of characters that Transall will look
for in the data fields to locate each field’s data value. The default for this is a
double quote. If the incoming data has no double quotes delimiting a field’s
value, Transall will still correctly process the field.

FieldSeparator This is either a single character or a string of characters that Transall will look
for in the data records to locate each data field. The default for this is a comma.

FileName Pathname for the file containing data records.
FirstRecordHeader For source files, this property controls the processing of the first record in a file.

You have these choices:

• No - (default) Transall does not treat the first record as a header record.

• Yes - Transall treats the first record as a header record. This makes Transall
skip this record. It also enables the Import Header menu item in the
delimited source File Assistant to automatically build the record layout
from the header record.

For destination files, this property determines if a header record is written. You
have these choices:

• No - (default) Transall does not write a header record.

• Yes - Transall writes a header record before the first detail record that
contains the field names wrapped in the field delimiter character.

LockMode Controls the file access permission. The valid choices are:

• Write - (default) Transall will set the file’s access permission to lock out
other processes from writing to the file while Transall has the file open for
reading.

• Read - Transall will set the file’s access permission to lock out other
processes from reading the file while Transall has the file open for reading.

• Read Write - Transall will set the file’s access permission to lock out other
processes from having any access to the file while Transall has the file
open for reading.

• Shared - Transall will NOT set the file’s access permission to lock out
other processes from having access to the file while Transall has the file
open for reading.

Reference for Component Properties - Traditional Files

119

Mode Controls the file input access. The valid choices are:

• Input - (default) Transall will open the file for input access in “cooked” or
translated mode. In this compatibility mode, carriage-return / line-feed
combinations are converted to line-feed symbols. This yields a common
compatibility with UNIX file systems.

• Binary Input - Transall will open the file for input access in “raw” or
untranslated mode. In this mode, carriage-return / line-feed combinations
are NOT converted to line-feed symbols.

OpenMode Controls the generation of logic to open a file. The valid choices are:

• Automatic - (default) Transall will automatically generate logic to open
this file for you.

• Manual -Transall will generate logic to open this file but will not
automatically call the logic. You must manually place a call to the
generated logic in your Transall Scripts or LogicTrees to have Transall run
the instructions that open this file.

You might want to select Manual if you need to have extra control over when
a file is opened by Transall. This may be the case if you have a need to open
and close a file several times during a Transall run. By default, the Automatic
open mode opens the file and holds the file open for the life of the Transall run,
closing the file when Transall is ready to terminate.

Separator This is a reference to a Transall resource (set up under
Tools>Options>Separators) that is either a single character or a string of
characters that Transall will look for in the file to locate each data record.

ByteOrder Controls the processing of binary data in the file. The valid choices are:

• Any - (default) Transall will assume any binary data being accessed in this
file is in the native binary format of the platform Transall is running on.

• Little-Endian -Transall will assume any binary data being accessed in this
file is in little endian (least significant bits in) format and Transall will
perform any binary manipulation required to process the data on the
platform that Transall is operating on. Note: Data on the WIN32 platform
is Little Endian.

• Big-Endian -Transall will assume any binary data being accessed in this
file is in big endian (most significant bits in) format and Transall will
perform any binary manipulation required to process the data on the
platform that Transall is operating on.

Property Meaning

Chapter 6 – Working with Sources and Destinations

120

CharacterSet Controls the processing of string data in the file. The valid choices are:

• Any - (default) Transall will assume string data being accessed in this file
is in the native character set of the platform Transall is running on.

• ASCII - Transall will assume string data being accessed in this file is in the
ASCII character set and Transall will perform any string manipulation
required to process the data on the platform that Transall is operating on.

• EBCDIC - Transall will assume string data being accessed in this file is in
the EBCDIC character set and Transall will perform any string
manipulation required to process the data on the platform that Transall is
operating on.

Or

• Unicode encodings - UTF-8, UTF-16, UTF-16LE, UTF-16BE, UCS-2,
UCS-2LE, UCS-2BE, UCS-4, UTF-32, UCS-4LE, UTF-32LE, UCS-4BE,
UTF-32BE, UTS-6

• Windows code pages - W_CENTRAL_EUROPE, W_CYRILLIC,
W_LATIN1, W_GREEK, W_LATIN5, W_HEBREW, W_ARABIC,
W_BALTIC, W_VIETNAMESE, W_THAI, W_JAPANESE,
W_KOREAN, W_S_CHINESE, W_T_CHINESE

• DOS code pages - D_USLATIN, D_ARABIC1, D_GREEK, D_BALTIC,
D_LATIN1, D_LATIN2, D_CYRILLIC, D_TURKISH,
D_LATIN1EURO, D_PORTUGUESE, D_ICELANDIC, D_HEBREW,
D_CANADIANFRENCH, D_ARABIC, D_NORDIC,
D_CYRILLICRUSSIAN, D_GREEK2, D_THAI, D_ARABICASMO

• ISO code pages - ISO_8859_1, ISO_8859_2, ISO_8859_3, ISO_8859_4,
ISO_8859_5, ISO_8859_6, ISO_8859_7, ISO_8859_8, ISO_8859_9,
ISO_8859_10, ISO_8859_11, ISO_8859_13, ISO_8859_14,
ISO_8859_15, ISO_8859_16

• Other code pages - O_KOI8R, O_KOI8U, O_KOI8RU, O_KOI8UNI,
O_BIG5, O_GB12345, O_GB2312, O_JIS0201, O_JIS0208, O_JIS0212,
O_JOHAB, O_KSC5601, O_KSX1001, O_WANSUNG, O_GB18030

• EBCDIC code pages - E_DFXDEFAULT, E_USCANADA,
E_LATIN5TURKISH, E_INTERNATIONAL, E_GREEK, E_HEBREW,
E_ROECELATIN2, E_JAPANESEKATAKANA_EX, E_ARABIC,
E_KOREAN_EX, E_CYRILLIC_RUSSIAN, E_LATIN1_EURO,
E_CYRILLIC_S_EUROPE, E_USCANADA_EURO,
E_GERMANY_EURO, E_DENMARKNORWAY_EURO,
E_FINLANDSWEDEN_EURO, E_ITALY_EURO,
E_SPANISH_EURO, E_UK_EURO, E_FRANCE_EURO,
E_INTL_EURO, E_ICELAND_EURO

• Note: On the Unicode encodings, a suffix of LE means Little Endian and
BE means Big Endian and this refers to text storage. Refer to the
ByteOrder property for specifying the storage of binary numbers.

Property Meaning

Reference for Component Properties - Traditional Files

121

ErrorHandler Controls the processing of errors in the file. The valid choices are:

• Automatic - (default) Transall will automatically handle and recover from
errors. Transall will “throw” only critical errors that must be “caught” via
an On Error Resume Next type statement.

• Manual - Transall will ignore all errors and return errors to your Scripts or
LogicTrees for handling.

Property Meaning

Chapter 6 – Working with Sources and Destinations

122

COBOL File
Property Meaning
Access Controls the file access method. The valid choices are:

• Read - (default) If this is a new file, Transall will create it with read access.

• Read Write - If this is a new file, Transall will create it with read / write
access.

FileName Pathname for the file containing data records.
LockMode Controls the file access permission. The valid choices are:

• Write - (default) Transall will set the file’s access permission to lock out
other processes from writing to the file while Transall has the file open for
reading.

• Read - Transall will set the file’s access permission to lock out other
processes from reading the file while Transall has the file open for reading.

• Read Write - Transall will set the file’s access permission to lock out other
processes from having any access to the file while Transall has the file open
for reading.

• Shared - Transall will NOT set the file’s access permission to lock out other
processes from having access to the file while Transall has the file open for
reading.

Mode Controls the file input access. The valid choices are:

• Input - (default) Transall will open the file for input access in “cooked” or
translated mode. In this compatibility mode, carriage-return / line-feed
combinations are converted to line-feed symbols. This yields a common
compatibility with UNIX file systems.

• Binary Input - Transall will open the file for input access in “raw” or
untranslated mode. In this mode, carriage-return / line-feed combinations
are NOT converted to line-feed symbols.

OpenMode Controls the generation of logic to open a file. The valid choices are:

• Automatic - (default) Transall will automatically generate logic to open
this file for you.

• Manual -Transall will generate logic to open this file but will not
automatically call the logic. You must manually place a call to the generated
logic in your Transall Scripts or LogicTrees to have Transall run the
instructions that open this file.

You might want to select Manual if you need to have extra control over when
a file is opened by Transall. This may be the case if you have a need to open and
close a file several times during a Transall run. By default, the Automatic open
mode opens the file and holds the file open for the life of the Transall run,
closing the file when Transall is ready to terminate.

Reference for Component Properties - Traditional Files

123

ByteOrder Controls the processing of binary data in the file. The valid choices are:

• Any - (default) Transall will assume any binary data being accessed in this
file is in the native binary format of the platform Transall is running on.

• Little-Endian -Transall will assume any binary data being accessed in this
file is in little endian (least significant bits in) format and Transall will
perform any binary manipulation required to process the data on the
platform that Transall is operating on. Note: Data on the WIN32 platform
is Little Endian.

• Big-Endian -Transall will assume any binary data being accessed in this
file is in big endian (most significant bits in) format and Transall will
perform any binary manipulation required to process the data on the
platform that Transall is operating on.

Property Meaning

Chapter 6 – Working with Sources and Destinations

124

CharacterSet Controls the processing of string data in the file. The valid choices are:

• Any - (default) Transall will assume string data being accessed in this file
is in the native character set of the platform Transall is running on.

• ASCII - Transall will assume string data being accessed in this file is in the
ASCII character set and Transall will perform any string manipulation
required to process the data on the platform that Transall is operating on.

• EBCDIC - Transall will assume string data being accessed in this file is in
the EBCDIC character set and Transall will perform any string
manipulation required to process the data on the platform that Transall is
operating on.

Or

• Unicode encodings - UTF-8, UTF-16, UTF-16LE, UTF-16BE, UCS-2,
UCS-2LE, UCS-2BE, UCS-4, UTF-32, UCS-4LE, UTF-32LE, UCS-4BE,
UTF-32BE, UTS-6

• Windows code pages - W_CENTRAL_EUROPE, W_CYRILLIC,
W_LATIN1, W_GREEK, W_LATIN5, W_HEBREW, W_ARABIC,
W_BALTIC, W_VIETNAMESE, W_THAI, W_JAPANESE,
W_KOREAN, W_S_CHINESE, W_T_CHINESE

• DOS code pages - D_USLATIN, D_ARABIC1, D_GREEK, D_BALTIC,
D_LATIN1, D_LATIN2, D_CYRILLIC, D_TURKISH,
D_LATIN1EURO, D_PORTUGUESE, D_ICELANDIC, D_HEBREW,
D_CANADIANFRENCH, D_ARABIC, D_NORDIC,
D_CYRILLICRUSSIAN, D_GREEK2, D_THAI, D_ARABICASMO

• ISO code pages - ISO_8859_1, ISO_8859_2, ISO_8859_3, ISO_8859_4,
ISO_8859_5, ISO_8859_6, ISO_8859_7, ISO_8859_8, ISO_8859_9,
ISO_8859_10, ISO_8859_11, ISO_8859_13, ISO_8859_14,
ISO_8859_15, ISO_8859_16

• Other code pages - O_KOI8R, O_KOI8U, O_KOI8RU, O_KOI8UNI,
O_BIG5, O_GB12345, O_GB2312, O_JIS0201, O_JIS0208, O_JIS0212,
O_JOHAB, O_KSC5601, O_KSX1001, O_WANSUNG, O_GB18030

• EBCDIC code pages - E_DFXDEFAULT, E_USCANADA,
E_LATIN5TURKISH, E_INTERNATIONAL, E_GREEK, E_HEBREW,
E_ROECELATIN2, E_JAPANESEKATAKANA_EX, E_ARABIC,
E_KOREAN_EX, E_CYRILLIC_RUSSIAN, E_LATIN1_EURO,
E_CYRILLIC_S_EUROPE, E_USCANADA_EURO,
E_GERMANY_EURO, E_DENMARKNORWAY_EURO,
E_FINLANDSWEDEN_EURO, E_ITALY_EURO, E_SPANISH_EURO,
E_UK_EURO, E_FRANCE_EURO, E_INTL_EURO,
E_ICELAND_EURO

• Note: On the Unicode encodings, a suffix of LE means Little Endian and
BE means Big Endian and this refers to text storage. Refer to the ByteOrder
property for specifying the storage of binary numbers.

Property Meaning

Reference for Component Properties - Traditional Files

125

Separator This is a reference to a Transall resource (set up under
Tools>Options>Separators) that is either a single character or a string of
characters that Transall will look for in the file to locate each data record.

ErrorHandler Controls the processing of errors in the file. The valid choices are:

• Automatic - (default) Transall will automatically handle and recover from
errors. Transall will “throw” only critical errors that must be “caught” via
an On Error Resume Next type statement.

• Manual - Transall will ignore all errors and return errors to your Scripts or
LogicTrees for handling.

Property Meaning

Chapter 6 – Working with Sources and Destinations

126

PPS File

• Read - (default) If this is a new file, Transall will create it with read access.

• Read Write - If this is a new file, Transall will create it with read / write
access.

• Write - (default) Transall will set the file’s access permission to lock out other
processes from writing to the file while Transall has the file open for reading.

• Read - Transall will set the file’s access permission to lock out other
processes from reading the file while Transall has the file open for reading.

• Read Write - Transall will set the file’s access permission to lock out other
processes from having any access to the file while Transall has the file open
for reading.

• Shared - Transall will NOT set the file’s access permission to lock out other
processes from having access to the file while Transall has the file open for
reading.

• Input - (default) Transall will open the file for input access in “cooked” or
translated mode. In this compatibility mode, carriage-return / line-feed
combinations are converted to line-feed symbols. This yields a common
compatibility with UNIX file systems.

• Binary Input - Transall will open the file for input access in “raw” or
untranslated mode. In this mode, carriage-return / line-feed combinations are
NOT converted to line-feed symbols.

• Automatic - (default) Transall will automatically generate logic to open this
file for you.

• Manual -Transall will generate logic to open this file but will not
automatically call the logic. You must manually place a call to the generated
logic in your Transall Scripts or LogicTrees to have Transall run the
instructions that open this file.

Property Meaning
Access Controls the file access method. The valid choices are:

FileName Pathname for the file containing data records.
LockMode Controls the file access permission. The valid choices are:

Mode Controls the file input access. The valid choices are:

OpenMode Controls the generation of logic to open a file. The valid choices are:

You might want to select Manual if you need to have extra control over when a
file is opened by Transall. This may be the case if you have a need to open and
close a file several times during a Transall run. By default, the Automatic open
mode opens the file and holds the file open for the life of the Transall run, closing
the file when Transall is ready to terminate.

Reference for Component Properties - Traditional Files

127

DESTINATION PROPERTIES
There follows a list of the allowable values for the unique properties for each kind
of Destination component.

Fixed File
Property Meaning
Access Controls the file access method. The valid choices are:

• Read - (default) If this is a new file (destination only), Transall will create
it with read access.

• Read Write - If this is a new file, Transall will create it with read / write
access.

FileName Pathname for the file containing data records.
LockMode Controls the file access permission. The valid choices are:

• Write - (default) Transall will set the file’s access permission to lock out
other processes from writing to the file while Transall has the file open for
reading.

• Read - Transall will set the file’s access permission to lock out other
processes from reading the file while Transall has the file open for reading.

• Read Write - Transall will set the file’s access permission to lock out other
processes from having any access to the file while Transall has the file open
for reading.

• Shared - Transall will NOT set the file’s access permission to lock out other
processes from having access to the file while Transall has the file open for
reading.

Mode Controls the file input access. The valid choices are:

• Input - (default) Transall will open the file for input access in “cooked” or
translated mode. In this compatibility mode, carriage-return / line-feed
combinations are converted to line-feed symbols. This yields a common
compatibility with UNIX file systems.

• Binary Input - Transall will open the file for input access in “raw” or
untranslated mode. In this mode, carriage-return / line-feed combinations
are NOT converted to line-feed symbols.

Chapter 6 – Working with Sources and Destinations

128

OpenMode Controls the generation of logic to open a file. The valid choices are:

• Automatic - (default) Transall will automatically generate logic to open this
file for you.

• Manual -Transall will generate logic to open this file but will not
automatically call the logic. You must manually place a call to the generated
logic in your Transall Scripts or LogicTrees to have Transall run the
instructions that open this file.

You might want to select Manual if you need to have extra control over when a
file is opened by Transall. This may be the case if you have a need to open and
close a file several times during a Transall run. By default, the Automatic open
mode opens the file and holds the file open for the life of the Transall run,
closing the file when Transall is ready to terminate.

Separator This is a reference to a Transall resource (set up under
Tools>Options>Separators) that is either a single character or a string of
characters that Transall will look for in the file to locate each data record.

ByteOrder Controls the processing of binary data in the file. The valid choices are:

• Any - (default) Transall will assume any binary data being accessed in this
file is in the native binary format of the platform Transall is running on.

• Little-Endian -Transall will assume any binary data being accessed in this
file is in little endian (least significant bits in) format and Transall will
perform any binary manipulation required to process the data on the
platform that Transall is operating on. Note: Data on the WIN32 platform
is Little Endian.

• Big-Endian -Transall will assume any binary data being accessed in this file
is in big endian (most significant bits in) format and Transall will perform
any binary manipulation required to process the data on the platform that
Transall is operating on.

Property Meaning

Reference for Component Properties - Traditional Files

129

CharacterSet Controls the processing of string data in the file. The valid choices are:

• Any - (default) Transall will assume string data being accessed in this file is
in the native character set of the platform Transall is running on.

• ASCII - Transall will assume string data being accessed in this file is in the
ASCII character set and Transall will perform any string manipulation
required to process the data on the platform that Transall is operating on.

• EBCDIC - Transall will assume string data being accessed in this file is in
the EBCDIC character set and Transall will perform any string manipulation
required to process the data on the platform that Transall is operating on.

Or

• Unicode encodings - UTF-8, UTF-16, UTF-16LE, UTF-16BE, UCS-2,
UCS-2LE, UCS-2BE, UCS-4, UTF-32, UCS-4LE, UTF-32LE, UCS-4BE,
UTF-32BE, UTS-6

• Windows code pages - W_CENTRAL_EUROPE, W_CYRILLIC,
W_LATIN1, W_GREEK, W_LATIN5, W_HEBREW, W_ARABIC,
W_BALTIC, W_VIETNAMESE, W_THAI, W_JAPANESE,
W_KOREAN, W_S_CHINESE, W_T_CHINESE

• DOS code pages - D_USLATIN, D_ARABIC1, D_GREEK, D_BALTIC,
D_LATIN1, D_LATIN2, D_CYRILLIC, D_TURKISH,
D_LATIN1EURO, D_PORTUGUESE, D_ICELANDIC, D_HEBREW,
D_CANADIANFRENCH, D_ARABIC, D_NORDIC,
D_CYRILLICRUSSIAN, D_GREEK2, D_THAI, D_ARABICASMO

• ISO code pages - ISO_8859_1, ISO_8859_2, ISO_8859_3, ISO_8859_4,
ISO_8859_5, ISO_8859_6, ISO_8859_7, ISO_8859_8, ISO_8859_9,
ISO_8859_10, ISO_8859_11, ISO_8859_13, ISO_8859_14, ISO_8859_15,
ISO_8859_16

• Other code pages - O_KOI8R, O_KOI8U, O_KOI8RU, O_KOI8UNI,
O_BIG5, O_GB12345, O_GB2312, O_JIS0201, O_JIS0208, O_JIS0212,
O_JOHAB, O_KSC5601, O_KSX1001, O_WANSUNG, O_GB18030

• EBCDIC code pages - E_DFXDEFAULT, E_USCANADA,
E_LATIN5TURKISH, E_INTERNATIONAL, E_GREEK, E_HEBREW,
E_ROECELATIN2, E_JAPANESEKATAKANA_EX, E_ARABIC,
E_KOREAN_EX, E_CYRILLIC_RUSSIAN, E_LATIN1_EURO,
E_CYRILLIC_S_EUROPE, E_USCANADA_EURO,
E_GERMANY_EURO, E_DENMARKNORWAY_EURO,
E_FINLANDSWEDEN_EURO, E_ITALY_EURO, E_SPANISH_EURO,
E_UK_EURO, E_FRANCE_EURO, E_INTL_EURO,
E_ICELAND_EURO

• Note: On the Unicode encodings, a suffix of LE means Little Endian and
BE means Big Endian and this refers to text storage. Refer to the ByteOrder
property for specifying the storage of binary numbers.

Property Meaning

Chapter 6 – Working with Sources and Destinations

130

ErrorHandler Controls the processing of errors in the file. The valid choices are:

• Automatic - (default) Transall will automatically handle and recover from
errors. Transall will “throw” only critical errors that must be “caught” via an
On Error Resume Next type statement.

• Manual - Transall will ignore all errors and return errors to your Scripts or
LogicTrees for handling.

Property Meaning

Reference for Component Properties - Traditional Files

131

Delimited File
Property Meaning
Access Controls the file access method. The valid choices are:

• Read - (default) If this is a new file, Transall will create it with read access.

• Read Write - If this is a new file, Transall will create it with read / write
access.

FieldDelimiter This is either a single character or a string of characters that Transall will look
for in the data fields to locate each field’s data value. The default for this is a
double quote. If the incoming data has no double quotes delimiting a field’s
value, Transall will still correctly process the field.

FieldSeparator This is either a single character or a string of characters that Transall will look
for in the data records to locate each data field. The default for this is a comma.

FileName Pathname for the file containing data records.
LockMode Controls the file access permission. The valid choices are:

• Write - (default) Transall will set the file’s access permission to lock out
other processes from writing to the file while Transall has the file open for
reading.

• Read - Transall will set the file’s access permission to lock out other
processes from reading the file while Transall has the file open for reading.

• Read Write - Transall will set the file’s access permission to lock out other
processes from having any access to the file while Transall has the file
open for reading.

• Shared - Transall will NOT set the file’s access permission to lock out
other processes from having access to the file while Transall has the file
open for reading.

Mode Controls the file input access. The valid choices are:

• Input - (default) Transall will open the file for input access in “cooked” or
translated mode. In this compatibility mode, carriage-return / line-feed
combinations are converted to line-feed symbols. This yields a common
compatibility with UNIX file systems.

• Binary Input - Transall will open the file for input access in “raw” or
untranslated mode. In this mode, carriage-return / line-feed combinations
are NOT converted to line-feed symbols.

Chapter 6 – Working with Sources and Destinations

132

OpenMode Controls the generation of logic to open a file. The valid choices are:

• Automatic - (default) Transall will automatically generate logic to open
this file for you.

• Manual -Transall will generate logic to open this file but will not
automatically call the logic. You must manually place a call to the
generated logic in your Transall Scripts or LogicTrees to have Transall run
the instructions that open this file.

You might want to select Manual if you need to have extra control over when
a file is opened by Transall. This may be the case if you have a need to open
and close a file several times during a Transall run. By default, the Automatic
open mode opens the file and holds the file open for the life of the Transall run,
closing the file when Transall is ready to terminate.

Separator This is a reference to a Transall resource (set up under
Tools>Options>Separators) that is either a single character or a string of
characters that Transall will look for in the file to locate each data record.

ByteOrder Controls the processing of binary data in the file. The valid choices are:

• Any - (default) Transall will assume any binary data being accessed in this
file is in the native binary format of the platform Transall is running on.

• Little-Endian -Transall will assume any binary data being accessed in this
file is in little endian (least significant bits in) format and Transall will
perform any binary manipulation required to process the data on the
platform that Transall is operating on. Note: Data on the WIN32 platform
is Little Endian.

• Big-Endian -Transall will assume any binary data being accessed in this
file is in big endian (most significant bits in) format and Transall will
perform any binary manipulation required to process the data on the
platform that Transall is operating on.

Property Meaning

Reference for Component Properties - Traditional Files

133

CharacterSet Controls the processing of string data in the file. The valid choices are:

• Any - (default) Transall will assume string data being accessed in this file
is in the native character set of the platform Transall is running on.

• ASCII - Transall will assume string data being accessed in this file is in
the ASCII character set and Transall will perform any string manipulation
required to process the data on the platform that Transall is operating on.

• EBCDIC - Transall will assume string data being accessed in this file is in
the EBCDIC character set and Transall will perform any string
manipulation required to process the data on the platform that Transall is
operating on.

Or

• Unicode encodings - UTF-8, UTF-16, UTF-16LE, UTF-16BE, UCS-2,
UCS-2LE, UCS-2BE, UCS-4, UTF-32, UCS-4LE, UTF-32LE, UCS-4BE,
UTF-32BE, UTS-6

• Windows code pages - W_CENTRAL_EUROPE, W_CYRILLIC,
W_LATIN1, W_GREEK, W_LATIN5, W_HEBREW, W_ARABIC,
W_BALTIC, W_VIETNAMESE, W_THAI, W_JAPANESE,
W_KOREAN, W_S_CHINESE, W_T_CHINESE

• DOS code pages - D_USLATIN, D_ARABIC1, D_GREEK, D_BALTIC,
D_LATIN1, D_LATIN2, D_CYRILLIC, D_TURKISH,
D_LATIN1EURO, D_PORTUGUESE, D_ICELANDIC, D_HEBREW,
D_CANADIANFRENCH, D_ARABIC, D_NORDIC,
D_CYRILLICRUSSIAN, D_GREEK2, D_THAI, D_ARABICASMO

• ISO code pages - ISO_8859_1, ISO_8859_2, ISO_8859_3, ISO_8859_4,
ISO_8859_5, ISO_8859_6, ISO_8859_7, ISO_8859_8, ISO_8859_9,
ISO_8859_10, ISO_8859_11, ISO_8859_13, ISO_8859_14,
ISO_8859_15, ISO_8859_16

• Other code pages - O_KOI8R, O_KOI8U, O_KOI8RU, O_KOI8UNI,
O_BIG5, O_GB12345, O_GB2312, O_JIS0201, O_JIS0208, O_JIS0212,
O_JOHAB, O_KSC5601, O_KSX1001, O_WANSUNG, O_GB18030

• EBCDIC code pages - E_DFXDEFAULT, E_USCANADA,
E_LATIN5TURKISH, E_INTERNATIONAL, E_GREEK, E_HEBREW,
E_ROECELATIN2, E_JAPANESEKATAKANA_EX, E_ARABIC,
E_KOREAN_EX, E_CYRILLIC_RUSSIAN, E_LATIN1_EURO,
E_CYRILLIC_S_EUROPE, E_USCANADA_EURO,
E_GERMANY_EURO, E_DENMARKNORWAY_EURO,
E_FINLANDSWEDEN_EURO, E_ITALY_EURO,
E_SPANISH_EURO, E_UK_EURO, E_FRANCE_EURO,
E_INTL_EURO, E_ICELAND_EURO

• Note: On the Unicode encodings, a suffix of LE means Little Endian and
BE means Big Endian and this refers to text storage. Refer to the
ByteOrder property for specifying the storage of binary numbers.

Property Meaning

Chapter 6 – Working with Sources and Destinations

134

ErrorHandler Controls the processing of errors in the file. The valid choices are:

• Automatic - (default) Transall will automatically handle and recover from
errors. Transall will “throw” only critical errors that must be “caught” via
an On Error Resume Next type statement.

• Manual - Transall will ignore all errors and return errors to your Scripts or
LogicTrees for handling.

Property Meaning

Reference for Component Properties - Traditional Files

135

COBOL File
Property Meaning
Access Controls the file access method. The valid choices are:

• Read - (default) If this is a new file, Transall will create it with read access.

• Read Write - If this is a new file, Transall will create it with read / write
access.

FileName Pathname for the file containing data records.
LockMode Controls the file access permission. The valid choices are:

• Write - (default) Transall will set the file’s access permission to lock out
other processes from writing to the file while Transall has the file open for
reading.

• Read - Transall will set the file’s access permission to lock out other
processes from reading the file while Transall has the file open for reading.

• Read Write - Transall will set the file’s access permission to lock out other
processes from having any access to the file while Transall has the file open
for reading.

• Shared - Transall will NOT set the file’s access permission to lock out other
processes from having access to the file while Transall has the file open for
reading.

Mode Controls the file input access. The valid choices are:

• Input - (default) Transall will open the file for input access in “cooked” or
translated mode. In this compatibility mode, carriage-return / line-feed
combinations are converted to line-feed symbols. This yields a common
compatibility with UNIX file systems.

• Binary Input - Transall will open the file for input access in “raw” or
untranslated mode. In this mode, carriage-return / line-feed combinations
are NOT converted to line-feed symbols.

OpenMode Controls the generation of logic to open a file. The valid choices are:

• Automatic - (default) Transall will automatically generate logic to open this
file for you.

• Manual -Transall will generate logic to open this file but will not
automatically call the logic. You must manually place a call to the generated
logic in your Transall Scripts or LogicTrees to have Transall run the
instructions that open this file.

You might want to select Manual if you need to have extra control over when a
file is opened by Transall. This may be the case if you have a need to open and
close a file several times during a Transall run. By default, the Automatic open
mode opens the file and holds the file open for the life of the Transall run, closing
the file when Transall is ready to terminate.

Chapter 6 – Working with Sources and Destinations

136

ByteOrder Controls the processing of binary data in the file. The valid choices are:

• Any - (default) Transall will assume any binary data being accessed in this
file is in the native binary format of the platform Transall is running on.

• Little-Endian -Transall will assume any binary data being accessed in this
file is in little endian (least significant bits in) format and Transall will
perform any binary manipulation required to process the data on the
platform that Transall is operating on. Note: Data on the WIN32 platform is
Little Endian.

• Big-Endian -Transall will assume any binary data being accessed in this file
is in big endian (most significant bits in) format and Transall will perform
any binary manipulation required to process the data on the platform that
Transall is operating on.

Property Meaning

Reference for Component Properties - Traditional Files

137

CharacterSet Controls the processing of string data in the file. The valid choices are:

• Any - (default) Transall will assume string data being accessed in this file is
in the native character set of the platform Transall is running on.

• ASCII - Transall will assume string data being accessed in this file is in the
ASCII character set and Transall will perform any string manipulation
required to process the data on the platform that Transall is operating on.

• EBCDIC - Transall will assume string data being accessed in this file is in
the EBCDIC character set and Transall will perform any string manipulation
required to process the data on the platform that Transall is operating on.

Or

• Unicode encodings - UTF-8, UTF-16, UTF-16LE, UTF-16BE, UCS-2,
UCS-2LE, UCS-2BE, UCS-4, UTF-32, UCS-4LE, UTF-32LE, UCS-4BE,
UTF-32BE, UTS-6

• Windows code pages - W_CENTRAL_EUROPE, W_CYRILLIC,
W_LATIN1, W_GREEK, W_LATIN5, W_HEBREW, W_ARABIC,
W_BALTIC, W_VIETNAMESE, W_THAI, W_JAPANESE,
W_KOREAN, W_S_CHINESE, W_T_CHINESE

• DOS code pages - D_USLATIN, D_ARABIC1, D_GREEK, D_BALTIC,
D_LATIN1, D_LATIN2, D_CYRILLIC, D_TURKISH,
D_LATIN1EURO, D_PORTUGUESE, D_ICELANDIC, D_HEBREW,
D_CANADIANFRENCH, D_ARABIC, D_NORDIC,
D_CYRILLICRUSSIAN, D_GREEK2, D_THAI, D_ARABICASMO

• ISO code pages - ISO_8859_1, ISO_8859_2, ISO_8859_3, ISO_8859_4,
ISO_8859_5, ISO_8859_6, ISO_8859_7, ISO_8859_8, ISO_8859_9,
ISO_8859_10, ISO_8859_11, ISO_8859_13, ISO_8859_14, ISO_8859_15,
ISO_8859_16

• Other code pages - O_KOI8R, O_KOI8U, O_KOI8RU, O_KOI8UNI,
O_BIG5, O_GB12345, O_GB2312, O_JIS0201, O_JIS0208, O_JIS0212,
O_JOHAB, O_KSC5601, O_KSX1001, O_WANSUNG, O_GB18030

• EBCDIC code pages - E_DFXDEFAULT, E_USCANADA,
E_LATIN5TURKISH, E_INTERNATIONAL, E_GREEK, E_HEBREW,
E_ROECELATIN2, E_JAPANESEKATAKANA_EX, E_ARABIC,
E_KOREAN_EX, E_CYRILLIC_RUSSIAN, E_LATIN1_EURO,
E_CYRILLIC_S_EUROPE, E_USCANADA_EURO,
E_GERMANY_EURO, E_DENMARKNORWAY_EURO,
E_FINLANDSWEDEN_EURO, E_ITALY_EURO, E_SPANISH_EURO,
E_UK_EURO, E_FRANCE_EURO, E_INTL_EURO,
E_ICELAND_EURO

• Note: On the Unicode encodings, a suffix of LE means Little Endian and BE
means Big Endian and this refers to text storage. Refer to the ByteOrder
property for specifying the storage of binary numbers.

Separator This is a reference to a Transall resource (set up under
Tools>Options>Separators) that is either a single character or a string of
characters that Transall will look for in the file to locate each data record.

Property Meaning

Chapter 6 – Working with Sources and Destinations

138

Documaker File - Variable Replacement File (VRF)

ErrorHandler Controls the processing of errors in the file. The valid choices are:

• Automatic - (default) Transall will automatically handle and recover from
errors. Transall will “throw” only critical errors that must be “caught” via an
On Error Resume Next type statement.

• Manual - Transall will ignore all errors and return errors to your Scripts or
LogicTrees for handling.

Property Meaning

Property Meaning
FileName Pathname for the file containing data records.
MessageFile User-specified name of a file where messages are written during generation

of the VRF file.
OpenMode Controls the generation of logic to open a file. The valid choices are:

• Automatic - (default) Transall will automatically generate logic to
open this file for you.

• Manual -Transall will generate logic to open this file but will not
automatically call the logic. You must manually place a call to the
generated logic in your Transall Scripts or LogicTrees to have Transall
run the instructions that open this file.

You might want to select Manual if you need to have extra control over
when a file is opened by Transall. This may be the case if you have a need
to open and close a file several times during a Transall run. By default, the
Automatic open mode opens the file and holds the file open for the life of
the Transall run, closing the file when Transall is ready to terminate.

WorkingDir Pathname of the working directory when writing the VRF file occurs.
DmgrFmt(370) Determines whether to generate a VLAM or Flat File EDL. The valid

values are:

• True - If set to true then, when Transall is running on the 370 platform,
Transall will call the Documaker FP DMGRFMT and DMGVRFWR
VDR APIs to create a VRF. These APIs create a VRF via calls to a
VLAM-based EDL and RuleBase.

• False - If set to false then, when Transall is running on the 370
platform, Transall will call the DMKVAE VDR API to create a VRF.
This creates a VRF via calls to the new Flat File-based EDL and
RuleBase.

ErrorHandler Controls the processing of errors in the file. The valid choices are:

• Automatic - (default) Transall will automatically handle and recover
from errors. Transall will “throw” only critical errors that must be
“caught” via an On Error Resume Next type statement.

• Manual - Transall will ignore all errors and return errors to your Scripts
or LogicTrees for handling.

Reference for Component Properties - SQL

139

REFERENCE FOR COMPONENT PROPERTIES - SQL

REFERENCE FOR COMPONENT PROPERTIES - ODBC
This section presents the allowable values for the unique properties for each kind of
Source and Destination component. These values can be viewed by going to the
Component Inspector, under the Properties tab, then find the properties listed below.
By clicking in the box to the right of the property, will select the word and display a

 control, that when clicked on will display a drop down box, that will show the
subcomponent’s properties.

SOURCE PROPERTIES
There follows a list of the allowable values for the unique properties for each kind
of Source component.

FormChain META, AFP, or DCD. This is the EDL chain type used at development time
to “dump forms” for computing form DOT height and locating form tags
for mapping in Transall.

FormsLibAutoAdd Determines how to add the Electronic Document Library (EDL) listed in
the Component Inspector. The valid values are:
True - The script generated to open the VRF destination file automatically
adds the EDL to the list used for building the VRF.
False - The Transall developer must explicitly add all EDLs for use by the
VRF via Scripts or LogicTree instructions.

FormsLibrary This is the name of EDL used at development time to “dump forms” for
computing form DOT height and locating form tags for mapping in
Transall.

FormsLibraryType This is the type of EDL to be used at development time to “dump forms”
for computing form DOT height and locating form tags for mapping in
Transall. The valid values are Database or File.

RuleBaseType This is the type of the RuleBase to be used at run-time. The valid values are:

• Database - Transall calls MRGUSER.W32 to create a VRF.

• File - Transall calls DMKUSER.W32 to create a VRF.
TGAFile This is a Tagcommander Export file that can be imported into at

development time to predefine the available tag list.

Property Meaning

Note For FpPlus data destinations, see FpPlus Data Destination Details on page 181.

Chapter 6 – Working with Sources and Destinations

140

ODBC Data Source

• Automatic - (default) Transall will automatically generate logic to
connect to this data source for you.

• Manual - Transall will generate logic to connect to this data source but
will not automatically call the logic. You must manually place a call to
the generated logic in your Transall Scripts or LogicTrees to have
Transall run the instructions that connect to this data source.

• Automatic - (default) Transall will automatically handle and recover
from errors. Transall will “throw” only critical errors that must be
“caught” via an On Error Resume Next type statement.

• Manual - Transall will ignore all errors and return errors to your
Scripts or LogicTrees for handling.

• True - (default) Transall will prompt for missing information such as
user ID and password when connecting to an ODBC database
connection.

• False - Transall will not prompt for missing information, but will
instead throw an “unable to connect” error message.

Property Meaning
ConnectionMode Controls the generation of logic to connect to a data source. The valid

choices are:

You might want to select Manual if you need to have extra control over
when Transall connects to a data source. This may be the case if you have
a need to connect to and disconnect from a data source several times during
a Transall run. By default, the Automatic connection mode connects to a
data source and holds the connection open for the life of the Transall run
(disconnecting when Transall is ready to terminate).

DataSource The ODBC connection string for the ODBC data source. This field is
populated via the ODBC Administrator dialog.

ErrorHandler Controls the processing of errors in the file. The valid choices are:

ODBCPrompt Indicates whether Transall should prompt for missing information. The
valid values are:

Transall will also retain more information when ODBCPrompt is set to
False then when this is set to True.
When this property is set to True, Transall only retains the name of the
ODBC connection. When this property is set to False, however, Transall
retains the name of the ODBC connection and any information provided to
connect to the ODBC to access database schema information. This extra
information generally includes user ID and password.

Reference for Component Properties - SQL

141

DESTINATION PROPERTIES
There follows a list of the allowable values for the unique properties for each kind
of Destination component.

ODBC Data Source

• Automatic - (default) Transall will automatically generate logic to
connect to this data source for you.

• Manual - Transall will generate logic to connect to this data source but
will not automatically call the logic. You must manually place a call to
the generated logic in your Transall Scripts or LogicTrees to have
Transall run the instructions that connect to this data source.

• Automatic - (default) Transall will automatically handle and recover
from errors. Transall will “throw” only critical errors that must be
“caught” via an On Error Resume Next type statement.

• Manual - Transall will ignore all errors and return errors to your Scripts
or LogicTrees for handling.

• True - (default) Transall will prompt for missing information such as
user ID and password when connecting to an ODBC database
connection.

• False - Transall will not prompt for missing information, but will
instead throw an “unable to connect” error message.

Property Meaning
ConnectionMode Controls the generation of logic to connect to a data source. The valid

choices are:

You might want to select Manual if you need to have extra control over
when Transall connects to a data source. This may be the case if you have a
need to connect to and disconnect from a data source several times during a
Transall run. By default, the Automatic connection mode connects to a data
source and holds the connection open for the life of the Transall run
(disconnecting when Transall is ready to terminate).

DataSource The ODBC connection string for the ODBC data source. This field is
populated via the ODBC Administrator dialog.

ErrorHandler Controls the processing of errors in the file. The valid choices are:

ODBCPrompt Indicates whether Transall should prompt for missing information. The
valid values are:

Transall will also retain more information when ODBCPrompt is set to
False then when this is set to True.
When this property is set to True, Transall only retains the name of the
ODBC connection. When this property is set to False, however, Transall
retains the name of the ODBC connection and any information provided to
connect to the ODBC to access database schema information. This extra
information generally includes user ID and password.

Chapter 6 – Working with Sources and Destinations

142

DESCRIBING AN ODBC-BASED SOURCE
After you complete the Add Source dialog, the Transall Editor opens the DataSource
Assistant.
Creating and populating an ODBC-based Source component requires more steps
than for other kinds of Source components. However, these components can include
more powerful data specifications.
You need to describe the data that the Transall Application will read from it by
constructing a standards-compliant, Structured Query Language (SQL) statement.
This statement identifies the following:

• The tables, provided by the identified ODBC data source, containing the data
that the component uses

• The data columns to be included

• JOIN operations to combine data from more than one table

• WHERE clauses to restrict the data to certain table rows

• ORDER BY clauses to identify on which columns (if any) to sort the set of actual
data records returned

Fortunately, you needn’t be an SQL expert to define the behavior of an ODBC-based
Source or Destination, although it helps. Rather, to describe the component’s
behavior, you work with graphical representations of “SQL queries.” The result of
doing so is a visible, and editable, SQL statement that the Transall Editor constructs.
When the Transall Application runs, it submits this SQL statement to the ODBC data
source to read or write the actual data records.

The Transall Editor contains a control bar that provides access to, and allows
modification of, SQL Filter and Join data.

Figure 86: SQL Control Bar

By default, this control bar opens and closes along with the DataSource Assistant,
but you can uncouple it by using Tools>Settings and unchecking Automatically
show SQL control bar. You can manually display it by using View>SQL Bar. If
the control bar contains Filter or Join expressions, you’ll see a check mark on that
tab.

Note Populating an ODBC-based Source means to define a “query” for a data record. This
query is the functional equivalent of a Record subcomponent in other kinds of Sources.

Reference for Component Properties - SQL

143

Create the Source Component
For an ODBC-based Source, respond to the Project>Add Source dialog by typing
the name of the ODBC data source, or by pressing the Browse button to select from
among the ODBC data sources that are available to your workstation.

Define a Query
A Query is a subcomponent of an ODBC-based Source or Destination, just as a
Record is a subcomponent in other kinds of Sources and Destinations. Each query
represents one SQL statement that requests a certain result set, or stream, of actual
data records be provided to the Transall Application. By defining more than one
query for an ODBC-based Source, you can define more than one stream of actual
data records for the same Source.

Your next step is to define an SQL query. Right-click in the DataSource Assistant’s
Query List view to add a Query or use the Resource>Add>Query menu. This will
open the Add Query dialog.
Figure 87 on page 144, shows the dialog, then name the Query, click on the Select
Query icon, and then press OK.

Note The target ODBC data source must be available to your workstation at the time you
create the Source component. Otherwise, you cannot complete the definition of the
component.

Note The DataSource Assistant for an ODBC-based Source is organized by record list that
represent its Queries, just as the Assistants for other Sources are organized by record
list that represent their Records.

Chapter 6 – Working with Sources and Destinations

144

In a given ODBC-based Source, for each Query that you define you will refer to one
or more of the SQL tables provided by the actual ODBC data source. (You select
which tables to include in a Query by opening an Add Table dialog, which is shown
in Figure 88 on page 146.).

Figure 87: Add Query Dialog

Hint If you are populating an ODBC-based Destination component, you would select the
Delete Query, Insert Query, or Update Query icon in the Add Query dialog because
these icons represent operations that add, modify, or delete data records via a
Destination.

QUERY PROPERTIES
In an open ODBC-based Source or Destination, go to the Component Inspector,
under the Properties tab, then find the properties listed below. By clicking in the box
to the right of the property, will select the word and display a control, that when
clicked on will display a drop down box, that will show the Query subcomponent’s
properties, as follows:

Reference for Component Properties - SQL

145

Property Meaning
Connect Determines the type of handle created for executing SQL statements.

The valid values are:

• PrivateCursor - (default) Transall will generate logic to create
a single database connection with a private statement handle for
executing this SQL statement. This connection often provides
the most capabilities while conserving resources with most
ODBC drivers.

• Private - Transall will generate logic to create a private database
connection and statement handle for executing this SQL
statement. This option should be used when more than one SQL
statement needs to be active at the same moment in time and the
ODBC driver being used does not support multiple active
statements on a single database connection.

• Shared - Transall will generate logic to create a shared database
connection and a shared statement handle for executing this
SQL statement. This option can be used when it is not necessary
to have more than one SQL statement active at the same moment
in time and system resources need to be conserved. Note: Not all
SQL ODBC drivers support concurrent queries on a single
database connection.

Format Indicates whether to prebind SQL statements to Transall memory
tables. The valid values are:

• Standard - (default) Transall will prebind this SQL statement to
Transall memory tables in the compile process for speed.

• Dynamic - Transall will not prebind this SQL statement to
Transall memory tables. This would be used when the SQL
statement string needs to be built dynamically at execution time.
Very few ODBC drivers require this option.

Type Determines the type of SQL statement to generate. The only valid
value is:

• Select - Transall will generate a SELECT SQL statement.

Chapter 6 – Working with Sources and Destinations

146

Identify One or More Tables for the Query
To review, after you selected an actual ODBC data source for this new Source, the
Transall Editor loaded ODBC-provided information about the data source’s tables,
synonyms, views, and system tables.
Your next step is to choose which tables provided by the ODBC data source contain
the columns that contain the data relevant to this query. Click the right mouse button
in the “Query Contents” view to display a pop-up menu, and select the Add Table
command. This can also be done using the main menu Resource>Add>Table. This
causes the Add Table dialog to appear, in which you select one or more tables that
will be included in the query.
Figure 88 on page 146, shows the Add Table dialog.

Figure 88: Add Table Dialog

After you select the tables, press OK.

Reference for Component Properties - SQL

147

Now the ODBC-based Source’s DataSource Assistant contains graphical
representations of each table you selected, as shown in Figure 89 on page 147.

Figure 89: Tables Added to ODBC-Based Source

Selecting Table Columns

Note You can reduce or expand the amount of table information returned in the Add Table
dialog by changing the selections for displaying the Schema. These options are
available when you right-click in the Contents view and select “Schema Display”.
When accessing an Excel file with no named ranges, you must have System Tables
selected under Schema Display or you won’t see any available items from which to
select.

To identify the columns of data to be used in the SQL query, select one or more
column names from the table representations shown in the DataSource Assistant.
An example is shown in Figure 90 on page 148, corresponding items have been
selected in the both tables.

Chapter 6 – Working with Sources and Destinations

148

Figure 90: Columns Selected in Tables From ODBC Data Source

Selecting columns causes the Transall Editor to construct a SELECT statement for the
SQL query that, when performed by the Transall Application, will provide data
records for this Source. Click on the SQL View tab at the bottom of the DataSource
Assistant to view the constructed statement.

Figure 91: Columns Selected in Tables From ODBC Data Source

Reference for Component Properties - SQL

149

Defining Join Criteria for the Query
If you have included more than one table for a given query, you should define the
SQL join criteria that describes their relationship. To do so, select the
Resource>Join Criteria command. (You can also right-click in the Contents view
and select the Join Criteria command from the pop-up menu.)
This causes the Transall Editor to display the SQL Join Expression Builder dialog,
shown in Figure 92 on page 149.

Figure 92: Defining Join Criteria

In the dialog’s text block, construct the expression by select the data columns in the
tree listing on the right view.
After you finish defining join criteria for this query, press OK.
For more information about the Expression Builder, see Enhanced Expression
Builder on page 257.

Chapter 6 – Working with Sources and Destinations

150

Now the Transall Editor updates the Query’s SELECT statement with a WHERE
clause, shown in Figure 93 on page 150.

Figure 93: Updated SQL Statement for Query, New Join Criteria

Note If you code associations of table columns only, without a join keyword, Transall codes it
as an implicit INNER JOIN and adds this criteria to the WHERE clause, as well as
building the FROM clause from tables where you have selected columns. If, however,
you code JOIN into this criteria, then you’re explicitly coding the FROM clause and the
Transall editor simply plugs this into the SQL statement. There’s no syntax checking on
Transall's part if you code JOIN, though you can still use “Verify Syntax” to have the
ODBC driver check the syntax. You can still use “Filter Criteria” to further control the
SELECT. The filter criteria will be in the WHERE clause.
Transall uses table name aliases to qualify column names. If there are no special
characters, the alias name is the same as the table name; where special characters
occur, Transall uses the underscore character (_) to make valid alias names (e.g., the
“Order Detail” table has an alias of Order_Detail in Transall). This alias is defined to the
SQL back end in the FROM clause as <table name> <alias>. If the table name has
special characters, it must be wrapped in the quote character defined in the SQL back
end:

FROM Products Products INNER JOIN `Order Details`
Order_Details
 ON Order_Details.ProductID = Products.ProductID

Reference for Component Properties - SQL

151

Defining Filter Criteria
For a given query, you can also restrict the set of actual data records by defining filter
criteria. These criteria correspond to a WHERE clause in the Query’s SELECT
statement.
Right-click in the Contents view and select the Filter Criteria command from the
pop-up menu.
This causes the Transall Editor to display the SQL Filter Expression Builder dialog,
shown in Figure 94 on page 151.

Figure 94: Defining Filter Criteria

In the dialog’s text block, type or construct the expressions that identify the rows of
data that you want the ODBC data source to provide in the tables already associated
with this query.
After you finish defining filter criteria for this query, press OK.

Chapter 6 – Working with Sources and Destinations

152

This again causes the Transall Editor to update the WHERE clause in the Query’s
SELECT statement, shown in Figure 95 on page 152.

Figure 95: Updated SQL Statement for Query, New Filter Criteria

Define Sort Criteria
For a given Query, you can also define the sort order for the actual records that result
from performing this Query for the specified tables provided by the actual ODBC
data source. These criteria correspond to an ORDER BY clause in this Query’s
SELECT statement.
Right-click in the Contents view and select the Sort Criteria command from the
pop-up menu.
This causes the Transall Editor to display the Sort dialog window, shown in Figure
96.

Figure 96: Add New Cell

New Button

Reference for Component Properties - SQL

153

1. Press the New button to add a row of cells.

Figure 97: Add Row of Cells

2. On the new row click in the left cell to display a list of all columns for the
selected tables in the Query, then select a column.

Figure 98: Select Tables and Sort Order

Chapter 6 – Working with Sources and Destinations

154

3. On the new row, click in the right cell to specify the sort order (ascending or
descending) for the column you just selected.

Figure 99: Add More Rows

4. Add more rows repeat steps 1, 2, and 3 in the dialog to specify the sort order of
other columns that participate in the Query.

Delete Button

Figure 100: Delete a Sort

Reference for Component Properties - SQL

155

5. To delete a sort order specification in this dialog, click on the cell containing the
row’s number, and press the Delete button.

Move Up

Move Down

Figure 101: Change Order of List

6. To change the ordering of the list of sort order specifications, click on the cell
containing the row’s number, and press the Move Up or the Move Down button.

7. After you finish defining the sort criteria for this Query, press OK.

Chapter 6 – Working with Sources and Destinations

156

Now the Transall Editor inserts an ORDER BY clause in the Query’s SELECT
statement, shown in Figure 102 on page 156.

Figure 102: Updated SQL Statement, New Sort Criteria

DESCRIBING AN ODBC-BASED DESTINATION
When adding an ODBC-based Destination, you choose from Insert, Update, or
Delete operations. In the Add Query dialog, these are presented as Insert Query,
Update Query, and Delete Query icons.
You populate each query object as you do for an ODBC-based Source. You interact
with the dialogs just as when describing a Select Query for an ODBC-based Source
component.
However, when constructing the Insert Query, Update Query, or Delete Query
objects, you can refer only to SQL tables (not views) and to only one SQL table per
query object.

Reference for Component Properties - SQL

157

Query Properties
In an open ODBC-based Source or Destination, go to the Component Inspector,
under the Properties tab, then find the properties listed below. By clicking in the box
to the right of the property, will select the word and display a control, that when
clicked on will display a drop down box, that will show the Query subcomponent’s
properties, as follows:

Property Meaning
Connect Determines the type of handle created for executing SQL statements. The

valid values are:

• PrivateCursor - (default) Transall will generate logic to create a single
database connection with a private statement handle for executing this
SQL statement. This connection often provides the most capabilities
while conserving resources with most ODBC drivers.

• Private - Transall will generate logic to create a private database
connection and statement handle for executing this SQL statement. This
option should be used when more than one SQL statement needs to be
active at the same moment in time and the ODBC driver being used does
not support multiple active statements on a single database connection.

• Shared - Transall will generate logic to create a shared database
connection and a shared statement handle for executing this SQL
statement. This option can be used when it is not necessary to have more
than one SQL statement active at the same moment in time and system
resources need to be conserved. Note: Not all SQL ODBC drivers
support concurrent queries on a single database connection.

Format Indicates whether to prebind SQL statements to Transall memory tables. The
valid values are:

• Standard - (default) Transall will prebind this SQL statement to Transall
memory tables in the compile process for speed.

• Dynamic - Transall will not prebind this SQL statement to Transall
memory tables. This would be used when the SQL statement string needs
to be built dynamically at execution time. Very few ODBC drivers
require this option.

Type Determines the type of SQL statement to generate. The valid values are:

• Insert - Transall will generate an INSERT SQL statement.

• Update - Transall will generate an UPDATE SQL statement.

• Delete - Transall will generate a DELETE SQL statement.

Chapter 6 – Working with Sources and Destinations

158

DETAILS ON SQL

SQL Bind Variables
There are three styles of bind variables available in Transall for passing Transall
variable data to ODBC drivers.

Colon (:) - Available for queries with Standard or Dynamic format. With Standard
format a variable prefixed with a colon is passed as a variable. When Format is
dynamic colon prefixed variables are replaced in the SQL statement by their value.
Variables of type String are wrapped in double quotes.
Caret (^) - Available for Dynamic format queries. Like colon prefixed bind
variables, they are replaced by their value except string datatype variables are not
wrapped.
Question Mark (?) - Available for Dynamic format queries. Variable names are
stripped from the ? prefix and passed as parameters to OdbcExecuteDynam. The
question marks are left in the SQL text as place holders for the ODBC driver. This
style of binding is frequently used for Date-Time stamps as it supports dates out to
milliseconds and doesn’t require special formatting.
Example SQL statement using all three styles of bind variables:

SELECT Orders.ShippedDate, Order_Details.Quantity,
Products.ProductName, Order_Details.ProductID

FROM Orders Orders, `Order Details` Order_Details, Products
Products

WHERE Order_Details.OrderID = Orders.OrderID

AND Orders.ShippedDate > ?System.ShipDate

AND Products.ProductID IN (^System.ID)

AND Order_Details.ProductID = Products.ProductID

AND Order_Details.Quantity < :System.Quantity

Processing SQL statements on non-WIN32 platforms
When Transall is executing on UNIX, processing SQL is supported through the
ISIDBLIB library of database interfaces. This library supports access to several
popular DBMS from UNIX such as ORACLE and Sybase. This is the same library
that Documaker uses to access EDLs and other resources when the publishing engine
is running on UNIX.

Qualifier Standard Format Dynamic Format
Colon (:) Passed as variable Passed as a string

Caret (^) n/a Passed as a string

Question Mark (?) n/a Passed as a variable

Reference for Component Properties - SQL

159

DETAILS FOR ACCESSING DATABASES FROM UNIX VIA
SQL
Tranexe for UNIX allows you to interact with databases using a set of database
access libraries written by Oracle. These libraries, referred to as ISIDBLIB, allow
Oracle applications to access a range of databases using a common set of code. Using
ISIDBLIB, Transall allows you to build an application on the PC, using ODBC to
define databases, and to then run the application unchanged on UNIX.

Process Overview
To use Transall to access databases on an the UNIX platform carry out the following
steps:

1. Create data source name (DSN) files on the UNIX machine which will contain
information telling the Transall executable which database to use, which server
to connect to, and the user id and password required for connecting to that server.
Once defined, these files allow the user to refer to the database connection by
using a single name.

2. Configure the database connection on the PC. The ODBC data source name
(DSN) used on the PC for identifying the database should be the same as the
name used on UNIX.

3. Build the Transall executable on the PC.

4. Transfer the Transall executable from the PC to UNIX. This may be done in a
variety of means, including direct file copy (for example, via diskette, FTP, NFS,
or Samba). Whichever method you use, it is important to make certain that you
are using a binary file copy.

5. The Transall executable (.TEX file) may then be run in the standard fashion on
UNIX.

Creating DSN Files for UNIX
Before Tranexe may access a database, the Transall user needs to set up a
configuration file that contains information necessary for Tranexe to locate and login
to the database server. This file is often referred to as a data source name or DSN file.
The DSN file is a text file consisting of a series of tags and values in a format similar
to an INI file. The file should be given a name of source_name.DSN, where
source_name is the name that will be used to refer to the database from within
Transall. The file itself may contain blank lines, comment lines, and lines defining
the tags required by the driver. Comment lines may begin with any character which
is not alphanumeric. Common examples might include a semicolon (;), equals sign
(=), or a forward slash (/). All text following the comment character on that line is
ignored. The tags themselves are case sensitive, and must be entered in upper case.
Note that the DRIVER= tag contains sub-tags which are used in defining the driver
connection. The sub-tags are separated by a forward slash (/). All other tags consist
only of the tag itself and a single value.

Chapter 6 – Working with Sources and Destinations

160

Tranexe recognizes the following tags:

Sample DSN files for each database are illustrated in the examples below:

Tag Meaning
DRIVER= This tag identifies the database driver to use. It takes the form DRIVER=driver/

VERSION:version[/TRACE:log_file]. Where driver is the driver corresponding to
the database which you wish to connect. Currently supported drivers are DB2,
SYBASE, and ORACLE. Version is the version number of the supported
ISIDBLIB driver. At the time of this printing, the current versions supported are
DB2: 5.0, SYBASE: 11.1.1, and ORACLE: 2.3.2. For current version levels, check
ISIDBLIB documentation. If you need a database log file for debugging purposes,
append the optional string /TRACE:log_file to the end of the tag, where log_file is
the name of the log file. This should only be done if debugging is required, as
creating a log file slows down program execution drastically.

SRVR= This tag identifies the name of the database server. This tag is currently required only
for SYBASE drivers.

DB= This tag identifies the name of the database to access on the server.
UID= This tag identifies the user name to use when connecting to the database server.
PWD= This tag identifies the password to use when connecting to the server.

Reference for Component Properties - SQL

161

Chapter 6 – Working with Sources and Destinations

162

The DSN file must be in the directory from which the Transall executable will be
run. If it is not there, the Tranexe will not be able to connect to the database. If more
than one user will be running Tranexe, the administrator may wish to set up a
centrally managed DSN file (or files) and have individual users place a link to the
configuration file in the directory from which their Transall executable will be run.

Reference for Component Properties - SQL

163

Linux ODBC Support
Many Linux distributions now include the unixODBC package which provides
support for a variety of ODBC drivers. Transall now allows users to use ODBC
drivers on Linux, in conjunction with this package, to access databases. Both the
unixODBC package and the specific ODBC driver needed to access the database
must be properly installed and configured before you may use this feature. For
details on acquiring and installing unixODBC and the drivers it supports, go to their
home page at http://www.unixodbc.org.
Once you have installed an ODBC driver, it is used in the same fashion as a native
database driver on Linux:

1. Create data source name (DSN) files on the UNIX machine which will contain
information telling the Transall executable which database to use, which server
to connect to, and the user id and password required for connecting to that server.
Once defined, these files allow the user to refer to the database connection by
using a single name.

2. Configure the database connection on the PC. The ODBC data source name
(DSN) used on the PC for identifying the database should be the same as the
name used on UNIX.

3. Build the Transall executable on the PC.

4. Transfer the Transall executable from the PC to UNIX. This may be done in a
variety of means, including direct file copy (for example, via diskette, FTP, NFS,
or Samba). Whichever method you use, it is important to make certain that you
are using a binary file copy.

5. The Transall executable (.TEX file) may then be run in the standard fashion on
UNIX.

The DSN file will need to use ODBC as the driver name. The value listed on the DB=
field should be the name of the unixODBC DSN that you wish to connect to. The
available unixODBC DSN values may be found by running a unixODBC utility,
such as ODBCConfigure, or by examining the odbc.ini file on your system. The
UID and PWD fields specify the user name and password respectively that are used
to connect to the identified database. A sample ODBC .DSN file is shown below:
;;
;; DB Connect info for ODBC -Oracle
;;
DRIVER=ODBC/VERSION:1.0/TRACE:odbc.log
DB=ORASRV1
SRVR=

;;
;; User ID
;;
UID=user1

;;
;; Password
;;
PWD=mypasswd

http://www.unixodbc.org

Chapter 6 – Working with Sources and Destinations

164

In normal instances, you should omit the “/TRACE:odbc.log” clause. Tracing should
only be done as part of debugging a database problem, as it slows performance
drastically.

Creating DSN Files for the PC
To access a database from the PC, it is necessary to configure an ODBC DSN. By
using the same name for both the PC and UNIX data sources, it is possible to create
applications on the PC, which will run unchanged on UNIX. When setting up the
DSN, one of two methods may be used:

1. Use an ODBC driver to connect to the same database that will be used on UNIX,
or a mirror of the database. Since the same database is being used on each
platform, identical tables, data types and naming conventions will be used. This
helps to ensure maximum compatibility across platforms.

2. Using a different ODBC driver and database, define copies of the database tables
and data that you wish to access from UNIX, and use this DSN when building
the Transall executable. Because of differences in naming conventions and data
types that are supported by different databases, it is possible that varying results
could be obtained. If connecting to the database to be used on UNIX is not an
option, however, this may still be used without problem in most cases.

For specifics on the details of configuring the ODBC DSN for Windows, see
documentation supplied by your database vendor and Microsoft.

Building the Transall Executable
Once database access has been established for the PC, the Transall executable (.TEX
file) is built and tested in the standard fashion on the PC, using the ODBC DSN
defined earlier. No additional steps are required in the build process for providing
UNIX database access.

Transferring the Transall Executable to UNIX
Once the Transall executable (.TEX file) has been built, it must be transferred to the
UNIX machine to be executed. There are currently many options available for
transferring a file from an UNIX. Some of the more commonly used options include
diskette, FTP, NFS, or Samba. While documenting each of these is beyond the scope
of this manual, it is worth noting that many of these transfer methods provide
methods to ensure that the file is transferred as binary data. Where available, these
options should be used; the data will become corrupted if a text-based copy takes
place.

Reference for Component Properties - SQL

165

DETAILS FOR ACCESSING DATABASES VIA JDBC
Transall now allows users with an existing JDBC environment to access the database
using the existing JDBC drivers. To make use of this feature, you must already have
an installed and working JDBC environment on the platform where your Transall
project will be run. In addition, you must have a working Java runtime environment
set up on the machine where the Transall project is to be run. Finally, you must set
three environment variables which tell your Transall project how to properly connect
to the Java environment:

• TranJavaPath—This variable should contain the full pathname of the
tranjava.jar file which was installed with Transall.

• JavaBaseDir—This variable should contain the base directory where the Java
runtime is installed (e.g., /usr/java/jre1.5.0_06).

• JavaLibDir—This variable should contain the .jar files needed by the Java
runtime environment. Often, it is the “lib” subdirectory of the directory specified
by JavaBaseDir.

JDBC support has not yet been added to the editor. To build a project for JDBC, you
must build your Transall project to access the database in the standard fashion (i.e.,
using ODBC). Once the project is finished, change the “DataSource” entry in the
Component Inspector bar for each Source or Destination that is to access a database
using JDBC. The “DataSource” field should be typed as follows:

JDBC;JSN=JDBC_Source_Name

where JDBC_Source_Name refers to a file that describes the JDBC connection.
When the Transall project is run, Transall will look in the current directory for a file
with the name given and an extension of .JSN.

Chapter 6 – Working with Sources and Destinations

166

If the “DataSource” entry contained “JDBC;JSN=GT_JDB” when the program was
running and attempted to connect to the database, it would open the file
GT_JDB.JSN to find information about how to connect to the database server (see
the following example).

Figure 103: Sample DataSource

This approach is similar to how ODBC connections are handled on Unix platforms.
The JSN file must contain the following items:

• DRIVER=jdbc_driver/VERSION:1.0[/TRACE:trace_filename]

• DB=database_location

• UID=user_name

• PWD=password

Lines in the file which don’t begin with one of these values are treated as comments
and ignored. It is recommended that the “/TRACE:filename” clause only be used
when requested by Oracle Support in attempting to track down a problem, as tracing
will drastically slow the performance of a running program. The values to supply for
“jdbc_driver” and “database_location” will be specific to both the JDBC driver
being used and the installation of the server.

Reference for Component Properties - SQL

167

Here is a sample Java data Source file for connecting to a DB2 server via JDBC:

For users who prefer not to have database user and password values in a file, Transall
also allows the JSN to be specified via an environment variable at runtime, as with
ODBC. To do this, specify the JSN as follows when building your project:

JDBC;JSN=$environment_variable_name

where environment_variable_name is the name of the environment variable that will
contain the proper connection information at runtime. When the program is running
and attempts to connect to the database, it will look in the named environment
variable to find the database connection information. The environment variable must
contain the same information that is required in the .JSN file. Each item in the
environment variable should be separated by a semi-colon. For example, if the
program was reading the database connection information from the environment
variable JDBC_INFO to connect to the database from the example above, the
variable JDBC_INFO should contain:
“DRIVER=com.ibm.db2.jcc.DB2Driver/VERSION:1.0/TRACE:jdbc.log;
DB=jdbc:db2://dal1db202:50000/dal1db202;
UID=DB2Test;PWD=password”

;;
;; JSN – Java database Source Name file
;;

DRIVER=com.ibm.db2.jcc.DB2Driver/VERSION:1.0/TRACE:jdbc.log

DB=jdbc:db2://dal1db202:50000/dal1db202

;;
;; User ID
;;
UID=DB2Test

;;
;; Password
;;
PWD=password

Chapter 6 – Working with Sources and Destinations

168

MAPPING OF ODBC DATA SOURCE COLUMN DATA
TYPES TO TRANSALL RECORD FIELD DATA TYPES
When you create a Source or Destination that is based upon an ODBC data source,
the Transall Editor automatically defines fields in the Source’s or Destination’s
Record whose data type is based upon the data type of the selected ODBC data
source’s selected columns.
In this case, the Transall Editor performs the data type mapping summarized in the
following table.

Table 1: Mapping of Data Types: ODBC Data Source to Transall

ODBC Data Source Datatype Transall Datatype

BIGINT
BINARY
CHAR
LONGVARBINARY
LONGVARCHAR
VARCHAR

String

INTEGER Long

DATE
TIME
TIMESTAMP

Datetime

DECIMAL
DOUBLE
FLOAT
NUMERIC
REAL

Double

BIT
TINYINT
SMALLINT

Integer

Other String

169

Chapter 7- Docuflex Destination

Docuflex Destination

OVERVIEW
Docuflex file is a data destination in Transall for feeding data to Oracle’s Docuflex
data publishing software. This destination consists of a set of Transall records
arranged in a tree hierarchy where each record on the tree is called a “Node”. The
idea behind the Docuflex file destination is to arrange the data required for
publishing a document via Docuflex into a hierarchical structure that makes it easy
to drive the document publishing in Docuflex. Please see the Docuflex product
documentation for a discussion of its extensive features.

SETTING UP A DOCUFLEX FILE DESTINATION
Select the Project>Add Destination menu item. From the Add Destination dialog,
select Docuflex File. The Docuflex Assistant opens:

Figure 104: Docuflex Assistant

Chapter 7 – Docuflex Destination

170

All Docuflex file destinations have a single main record node named ROOT#. Under
this ROOT record node, you add record nodes in a hierarchy that represent the data
needed to publish a document via Docuflex. To add a record node, click on the
ROOT record node and then select the Resource>Node Add menu item (you can
also right mouse button in the Data Schema view). This will add a new record node
under the ROOT node.

Figure 105: Adding a New Record under ROOT Record Node

To change the record node’s name, update the name property in the Component
Inspector. To add fields to the record node, enter the field name into the Contents
view of the Docuflex Assistant. To add another record node to the hierarchy, click
on the node that should be the parent to the new record node (this is the node that the
new record node should be under) and select the Resource>Node Add menu item.
Repeat this process to build out your data hierarchy for Docuflex. This data hierarchy
is called a “Data Schema”, it represents the data structure, types, and name that will
be sent to Docuflex in a Docuflex input file.

Overview

171

Figure 106 on page 171, is an example of a complete Docuflex file destination:

Figure 106: Docuflex Data Destination

If you already have a Docuflex Schema file that you want to use, you can select
Resource>Import Schema and choose a Docuflex schema (*.DDS) file. If
you’ve integrated Transall with Documanage, select Resource>Import Schema
from DMG and select a schema file from a Documanage Cabinet and Folder.

HOW DATA MOVES THROUGH A DOCUFLEX FILE
DESTINATION
Data moves through a Docuflex file destination in chunks called “DataSets”. Each
DataSet represents the data needed to publish one document (like a Contract or a
Policy) via the Docuflex Data Publishing product. After all the data for a single
document has been placed into a Docuflex file destination, the data is written to a
Docuflex input file, all at once, via a LogicTree Output instruction. The Output
instruction does two things. It writes a DataSet from the cached up data in the
Docuflex file destination and it clears the Docuflex file destination’s memory cache
so it can be populated with another chunk or DataSet of data.
Because the Docuflex file destination is hierarchical, it is mapped slightly differently
than other traditional data destinations such as delimited files. Maps that target
Docuflex file destination record nodes have an extra property, “Auto Insert”. When
this property is set to Yes, Transall inserts a new row into the record node hierarchy
in memory before mapping over the record fields. This is important because it
enables Transall Maps to add new records to the hierarchy as they load fields into the
records.
The logic that goes into populating a Docuflex file destination with data usually
consists of several Map instructions at build out the data hierarchy from top to
bottom.

Chapter 7 – Docuflex Destination

172

Using Figure 106 on page 171, as an example, a Policy record must be mapped
before an Auto record can be mapped) and then an Output instruction that writes the
data hierarchy DataSet to the Docuflex input file. Please see the documentation for
Docuflex on input files for more information about how Docuflex processes data.

DEFINING A DATASET IDENTIFIER
The root record in a Docuflex destination has a field named DF$DataSetID that is
used by the Docuflex publishing software to provide an identifier in messages during
publishing. Use either a Map or an Execute instruction in the Logic instruction in the
LogicTree to specify a meaningful value, such as account number, for the
DF$DataSetID.

Figure 107: DataSet Identifier

USING A DOCUFLEX DESTINATION AS A DATA SOURCE
You can use Transall Docuflex Destinations as a Data Source to

• read the contents of a Docuflex Data File (DDF)

• extract the data contents from a Stacked Document Compound Document
(DCD) file

• extract the data contents from an archived Docuflex DCD

Overview

173

To Use a Docuflex Destination as a Data Source

• Set the AsSource property of the DDF Destination to True:

Figure 108: Set AsSource to True

Chapter 7 – Docuflex Destination

174

If the file that will be read is not a DDF, but a DCD or stacked DCD, then also set
the DDF in DCD property to True.

Figure 109: Set DDF in DCD to True

Overview

175

These settings make the Docuflex Destination definition available as a Data Source.
The Docuflex Source acts like an XMLPlus Source. To use the Source, add a Walk
on the Destination name to a LogicTree.

Figure 110: Add Walk on the Destination Name to a LogicTree

For each execution of the Walk instruction, Transall will load the next transaction
from a DDF file, DCD, or Stacked DCD into the records defined for the Docuflex
Destination. These records can then be traversed to process the data.

Chapter 7 – Docuflex Destination

176

177

Chapter 8- FP Plus Destination

FP Plus Destination

OVERVIEW
Forms Publication Plus (FpPlus) is a data destination in Transall for feeding
Documaker Forms Publishing (FP) software. Transall actually provides two kinds of
FP data destinations. One is called “Documaker FP File” and the other is called
“Documaker FP Plus”.
The Documaker FP File data destination is provided for use by Transall developers
that are familiar with the Documaker Variable Data Reformatter (VDR) Application
Program Interface (API) and wish to create a VRF via Transall by building logic that
directly calls the detailed VDR API.
The Documaker FP Plus data destination is provided for use by Transall developers
that are not familiar with the Documaker VDR API. The objective of the Documaker
FP Plus data destination is to let the Transall developer concentrate on the business
logic for selecting forms and tags that are required for various business scenarios vs.
thinking about making calls to the Documaker VDR API. This data destination
shields the Transall developer from the details of the VDR API while still providing
powerful features such as automatic form DOT height counting. DOT height
counting enables Transall to provide text flow control, assembling forms in the VRF
that act as headers and footers in the output. This DOT counting ability also enables
Transall to provide widow/orphan control to prevent page breaks from occurring at
unwanted points in the output and other features. These special features, provided by
the Documaker FP Plus data destination, would have to be custom coded by the
Transall developer when using the Documaker FP File data destination.

FP PLUS BUILT IN FEATURES
Headers and Footers - Forms that will appear as the first or the last on a page.
Keep - Attempts to keep a page break from happening between two forms or a block
of forms.
Word Wrap - Transall will preprocess a tag’s or a block tag’s data to insert new line
characters so that line breaks will occur between words. This feature becomes
particularly powerful when combined with Overflow.

Chapter 8 – FP Plus Destination

178

Overflow - Enables the tags of a form (the parent) to be mapped to a second form
(the child) to handle tag data overflow conditions. When the length of data set to a
parent’s tag exceeds the Form’s Tag length (or depth) the overflowing data will be
sent by Transall to tags on the child form. If the overflow continues on the child form
the child will be sent as many times as is required to transmit all the overflowing
data.
Page Counting - Transall will maintain a page count and a total page count at two
levels. The first is at the MergeSet and this page count works very similarly to the
DMG.PAGE.COUNT tag provided by Documaker FP. The advantage of Transall’s
page count is that it can be used in business rules defined to FpPlus. The second page
count is at the “section” level. Blocks of output can be identified as a section in
FpPlus and Transall will maintain an individual page count and total page count for
each section. This enables “Page # of #” type output for a section vs. the whole
MergeSet.

HOW FP PLUS WORKS
FpPlus is little different than other Data Destination types in Transall. Other Data
Destinations have records defined to them that represent physical records of a file or
rows in a SQL database table. The FpPlus data destination also has records but these
do not represent physical records in a file or database. What these records represent
is all the data that is needed to create a document (a MergeSet) in a VRF file. You
can have many Records in an FpPlus data destination and these records can be
arranged in a hierarchy where some of the records “own” child records. The record
hierarchy feature of FpPlus can be used when processing data that has records
connected by a parent child relationship.
For example, the records in an FpPlus destination for an auto insurance policy would
hold all the data needed to map the tags on all the forms that are required to produce
the auto policy. There would probably be a POLICY record with fields such as
POLICY_NUMBER, PREMIUM, INSURED_NAME, INSURED_ADDRESS, etc.
There would also probably be an AUTO record with fields such as VIN, MAKE,
MODEL, GARAGE_ADDRESS, etc. The AUTO record may also have a child
record DRIVER that holds a list of drivers for the auto with fields like NAME, AGE,
etc. In this example, these three records will be inserted into the FpPlus Data
Destination by any Data Maps used in your Transall application. The AUTO and
DRIVER records should be inserted with care to sequence because Transall
automatically connects child records to the last parent record inserted. So, in this
example, let’s say that the first AUTO has two drivers and the second only one, then
the first AUTO would be inserted into the FpPlus destination followed by its two
DRIVER records and then the second AUTO would be inserted followed by its one
DRIVER.

Overview

179

Once the data has been inserted into the FpPlus data destination by normal Transall
LogicTrees and Data Maps, a special Transall LogicTree, that is owned by the
FpPlus data destination, is executed to process the data loaded in the destination’s
records. This special LogicTree is created by Transall for you when you define an
FpPlus data destination to your Transall project and it is designed to hold business
rules that select the forms required to produce the output you require. It is in this
special LogicTree that special Documaker FpPlus LogicTree instructions can be
used. These special instructions enable form selection, tag mapping, overflow
definition, header and footer selection, etc. So when using an FpPlus data destination
you will always have two LogicTrees, one LogicTree that performs data extract and
loads data to the FpPlus Data Destination and then a second LogicTree that handles
business rules for form selection and processing.

FPPLUS BUSINESS LOGIC
As discussed in the preceding section, Transall will create a special LogicTree for
you when you define an FpPlus data destination to your Transall project. When you
look at this FpPlus Data Destination LogicTree you will see a topmost instruction
“FpLayout”. The FpLayout instruction tells the Transall compiler that all the
instructions under it will be for an FpLayout that defines the business rules for form
selection and assembly to build an FP document (a MergeSet) in an FP VRF file.
Any Transall instructions can be used under an FpLayout instruction. Some Transall
instructions can ONLY be used under an FpLayout. These instructions are: FpForm,
FpAddTag, FpKeepOnSamePage, FpHeader, FpFooter, FpComment,
FpDataGroup, FpDataHeader, and FpPageBreak.
The following are details on each instruction:
FpLayout - Designates a block of Transall logic that is dedicated to building a
document (a MergeSet) in a VRF file. This instruction must be associated to an
FpPlus Data Destination. FpLayout instructions can not be nested under other
FpLayout instructions. More than one FpLayout instruction can be placed in a single
LogicTree. Each FpLayout instruction will cause a new FP document (a MergeSet)
to be placed in the resulting VRF file.
FpForm - Adds a FORM to the FP document (MergeSet) that will be written to the
VRF file. When an FpForm instruction is added to the FpLayout LogicTree, Transall
accesses the “current” Electronic Document Library (EDL) assigned to the FpPlus
Data Destination that the FpLayout is associated with. Transall displays a searchable
list of FORMs from the EDL that the Transall developer can select from. When a
FORM is selected Transall scans the FORM for TAGs. Transall then displays a
dialog for mapping data to TAGs defined as delete=yes. For TAGs found on the form
that are defined as delete=no (e.g. are global), Transall adds these TAGs as fields to
a special GlobalTag record that is defined in the FpPlus Data Destination’s record
list. This special record enables Transall to add delete=no TAGs only once to an FP
document (MergeSet) and add delete=yes TAGs with their FORMs.
FpAddTag - Unconditionally adds a TAG to the FP document (MergeSet).

Chapter 8 – FP Plus Destination

180

FpKeepOnSamePage - Attempts to keep a page break from occurring within a
block of logic. Arrange instructions under an FpKeepOnSamePage to cause Transall
to predict if a page break would occur while the logic is processing. Transall does
this by pre-executing this logic at run-time. Before this pre-execution, the “state” of
the Transall environment is saved. Then the logic under the FpKeepOnSamePage is
executed in a pre-execution mode that does not write FORMs and TAGs to the FP
document (MergeSet). After the pre-execution is complete the “state” of the Transall
environment is restored. If a page break was hit during the pre-execution, a page
break is forced to occur before the FpKeepOnSamePage is executed for real. If no
page break occurred then the logic under the FpKeepOnSamePage instruction is
processed normally.
FpHeader and FpFooter - Defines a block of instructions that are executed when
Transall is writing FORMs as the first or last on a page. Arrange instructions under
a FpHeader or FpFooter to define instructions that execute as the first or last for a
page. More than one header or footer can be defined to a document. As each
FpHeader and FpFooter is defined it replaces the last header or footer defined. To
clear a header or footer, define an FpHeader or FpFooter instruction with no
instructions nested under it.
FpComment - Places a comment in the FpLayout debugging output. FpPlus will
write a debugging file that shows all the forms selected and all the TAGS and their
values sent to the VRF file. The FpComment instruction places a comment in this
file for debugging and testing purposes. (See the Debug File property of The FpPlus
Data Destination to define a debug file.)
FpDataGroup - Defines a looping block of instructions. Arrange instructions under
an FpDataGroup to define instructions that execute once for each row in a FpPlus
record. This instruction loops on the record’s rows starting with the first row and
walking through to the last row. The FpDataGroup instruction will set the row
“currency” for the record before running the block of instructions nested under the
FpDataGroup. More than one FpDataGroup can be nested under each other to
traverse parent child records that are several levels deep in the FpPlus Data
Destination.
FpDataHeader - Defines a block of instructions that are executed only if a page
break occurs in the FpDataGroup that is associated with the FpDataHeader. Arrange
instructions under an FpDataHeader to define instructions that execute after page
headers and only if a page break occurs while an associated FpDataGroup is
processing. This instruction is great for adding “Continued” type headers to
repeating data that repeats across more than one page.
FpPageBreak - Forces a page break to be processed by Transall. Note that this does
not force a page break to occur in FP Documaker (Documaker). The best way to
synchronize Transall’s assumed page breaks to Documaker FP’s physical page
breaks is to define a special page break FORM defined as the last form in the Footer.
This FORM should be defined as having two logical pages but only one physical
page and a zero DOT height. Contact Oracle support if you need help creating this
special page break form. The FpPageBreak instruction can also adjust the default
max page DOT height used for pagination from the point of the Page break forward
in the document (MergeSet) and reset Transall’s section page numbering. If zero is
passed for the page height on an FpPageBreak then Transall will make no adjustment
to the default page height.

Overview

181

FPPLUS DATA DESTINATION DETAILS

Documaker FP Plus Data Destination Properties

Figure 111: Documaker FP Plus Data Destination Properties

Chapter 8 – FP Plus Destination

182

Documaker FP Plus data destination properties are shown in Figure 111 on page
181.

Name: Name of the Documaker FP Plus data destination.
Description: Comment text about the Documaker FP Plus data

destination.
DebugFile: Name of a file that will be created only when

running Documaker FP Plus under the Transall
debugger. This file helps explain Documaker FP
Plus’s pagination processing for debugging.

DmgrFmt(370): True or False. If set to true then when Transall is
running on the 370 platform Transall will call the
Documaker FP DMGRFMT and DMGVRFWR
VDR APIs to create a VRF. These APIs create a
VRF via calls to a VLAM based EDL and
RuleBase. If set to false then when Transall is
running on the 370 platform, Transall will call the
DMKVAE VDR API to create a VRF. This creates a
VRF via calls to the new “flat file” based EDL and
RuleBase.

ErrorHandler: Automatic or Manual. If set to Automatic, Transall
will handle all recoverable errors itself and handle
all unrecoverable errors by aborting with a
message. If set to false Transall ignores all errors
(not recommended) and the Transall user must
write Transall script code to handle errors.

FileName: This is the default name of the VRF file that will be
created by this data destination.

FormsChain: META, AFP, or DCD. This is the EDL chain type
used at development time to “dump forms” for
computing form DOT height and locating form tags
for mapping in Transall.

FormsLibAutoAdd: True or False. When True the EDL or EDLs
entered in FormsLibrary are available at run time
through VdrAddFormsLibrary calls in the open
script.

FormsLibrary: This is the Name of EDL used at development time
to “dump forms” for computing form DOT height
and locating form tags for mapping in Transall.
Multiple EDLs may be entered, though only one
can be active (open) at a time for any FP
destination.

FormsLibrayType: Database or File. This is the type of EDL to be
used at development time to “dump forms” for
computing form DOT height and locating form tags
for mapping in Transall.

LogicTree: Name of the Documaker FP Plus Logic Tree.
MessageFile: Name of a file that will receive messages from the

DMKUSER.W32 VDR API or the DMKVAE API on
the 370 platform. This parameter is ignored if
Transall is running on the 370 platform and the

Overview

183

DmgrFmt(370) parameter is set to True. When this
is the case messages from Documaker flow
through the older DMGRFMT VDR API as
documented in the Documaker 3.x Reference
Guide.

OpenMode: Automatic or Manual. When this is set to
Automatic Transall to automatically prepare the
Documaker FP Plus destination for receiving data.
If this is set to Manual then the Transall user must
explicitly execute the open commands for the data
destination in the LogicTree.

PageHeight: Defaults to 3300. This is the initial DOT page
height used by Documaker FP Plus for paginating
forms written to the VRF.

Resource: Display only, this is the type of Transall resource.
RuleBase: Run time rule base, automatically set in the open

script if not blank.
RuleBaseRev: Revision level of the named rule base.
RuleBaseType: Database or File. This is the type of the rule base

to be used at run-time. If setting is placed to
Database then Transall calls MRGUSER.W32 to
create a VRF. If this is set to file then Transall calls
DMKUSER.W32 to create a VRF.

TGAFile: This is a Tag Commander Export file that can be
imported into Documaker FP Plus at development
time to predefine the available tag list.

WorkingDir: Name of a directory that will be used to store
temporary files (such as dumped form chains) by
the DMKUSER.W32 VDR API. This parameter is
ignored on the 370 platform. If blank it defaults to
the current working directory.

Chapter 8 – FP Plus Destination

184

Documaker FP Plus Data Destination Record Properties

Figure 112: Documaker FP Plus Data Destination record properties

Documaker FP Plus data destination record properties are shown in Figure 112 on
page 184.

Name: Name of the record in the Documaker FP Plus
data destination.

Description: Comment text about the Documaker FP Plus
record.

Record properties:
Name: Name of the record to Transall (example the

Transall name of the Policy Number).
Tag Name: Name of a VRF tag that will be added to the VRF

populated with the value from this record. Note this
is an easy way to unconditionally populate tags in
the MergeSet. This is most often used with
delete=no tags.

Datatype: The data type of the field Documaker FP Plus will
use to hold this value in memory.

Format: This is a formatting mask string that will be applied
to the data when the field has a Tag Name defined
and is written to the VRF. Note this value is most
useful for formatting date fields.

Overview

185

EXAMPLES

Figure 113: Example of a FpComment

FpComment - Is exactly what it says, a comment it is used to place a note,
statement, or explanation about something pertaining to the program.

Figure 114: Example of Dropping an Instruction on to the Logic Tree

Note By holding down the SHIFT key, clicking on any of the instructions, and dragging it over
the LogicTree Assistant, a blue line displays to show you where the instruction will be
placed when you release the mouse button.

Chapter 8 – FP Plus Destination

186

Figure 115: Right Mouse Menu

Note Selecting an object in the LogicTree Assistant and clicking the right mouse button
displays the menu above. This allows you to Delete, Clone, or even Move the selected
object Up or Down. This same menu appears by going to Logic Tree on the main menu
bar. You can also Move the object Up by pressing CTRL+SHIFT+U; Move the object
Down by pressing CTRL+SHIFT+W.

Overview

187

Figure 116: FpForm in LogicTree Assistant

FpForm - Add a form to the forms list.

Figure 117: Red X and Red Text for Incomplete Setup

Chapter 8 – FP Plus Destination

188

After being placed into the LogicTree Assistant, a red X appears on the left side and
the text will appear in red, to show that an incomplete set up of the instruction.

Figure 118: Electronic Document Library (EDL)

Double click on the highlighted FP Plus Form instruction and it will bring up the
Electronic Document Library (EDL) that is a list of all the forms available in the
project.

Figure 119: Find Form Using Form Select Dialog Box

Overview

189

In the Form Select dialog box, look up the form that is needed, using the Find feature.
When the form has been found, highlight the form and click the Select button,
Transall will dump the form to see if there are tags on that form.

Figure 120: Documaker FP Plus Assistant

If the form contains tags, the Documaker FP Plus Assistant opens, displaying the
tags. If the form has no tags, it will just be dumped into the LogicTree Assistant.

New Form

Map Editor

Tag Expression Builder

Chapter 8 – FP Plus Destination

190

Figure 121: Map Expression Builder

You can add an expression or modify an existing expression by clicking the box with
the three dots in the Expression Builder.

Figure 122: Form Select Dialog Box

If you create a new form placeholder in the Form Select dialog box, click the New
button.

Overview

191

You have the ability to add your own user-based forms; there may be a time that a
form is needed that is not in EDL. You can create a form, by naming and putting
some default information in this form in Transall and what Transall will do is hold
the form as an invalid form, as the form as not been validated against the EDL. This
will allow you to build all your business logic and test that business logic. Transall
does have a feature that can validate a form and the validation process go back over
and checks to make sure the tags that were mapped, match the tag names that were
put into the EDL.

Figure 123: Form Editor

Note You might create a new form placeholder while the EDL is being updated by your
companies form people so you do not have to wait for the update to build business logic
in Transall.

Chapter 8 – FP Plus Destination

192

The Form Editor dialog box will open, input information and click OK.

Figure 124: Add Tags to New Form

Highlight the new form and click Select and the Transall Editor will ask if you want
to add temporary tags.

Figure 125: Tag Editor

If YES, to creating a new temporary Tag, the Tag Editor Dialog box will open, for
information to be added. Input information, if you want to add another tag click the
New button, if no new tags need to be added, click the OK button.

Select
Button

New Form

Map Editor

Tag Expression Builder

Overview

193

Figure 126: New Form with Tags

This is what a new form placeholder with tags would look like, note that new Form
appears on the Forms list of the Documaker FP Plus Assistant and the LogicTree
Assistant. In the Documaker FP Plus Assistant, this new Form placeholder will
continue to have a red X indicating the form is not in the EDL. When the form is
added to the EDL, you can use the form synchronize feature to validate the Form’s
information to the EDL.

Chapter 8 – FP Plus Destination

194

Figure 127: Form Properties

Overview

195

With the New Form Selected, this what the Form Properties would look like of the
newly created form. These properties can be changed by clicking on the right side of
the Component Inspector.

Figure 128: Tag Properties of New Tag

Chapter 8 – FP Plus Destination

196

With the New Tag selected this is what the Tag Properties would look like in the
Component Inspector. These properties can be changed by clicking on the right side
of the Component Inspector

Figure 129: New Form without Tags

If NO, to creating new Tags, the new form will be added to the LogicTree Assistant,
but note that new Form appears on the Forms list of the Documaker FP Plus
Assistant, but has no tags.

Overview

197

You have the ability to add your own user-based forms; there may be a time that a
form is needed that is not in EDL. You can create a form, by naming and putting
some default information in this form in Transall and what Transall will do is hold
the form as an invalid form, as the form as not been validated against the EDL. This
will allow you to build all your business logic and test that business logic. Transall
does have a feature that can validate a form and the validation process go back over
and checks to make sure the tags that were mapped, match the tag names that were
put into the EDL.

Figure 130: Example of FpHeader and FpFooter

FpHeader - When you drop a FPHeader into the project, you are telling the layout
processor this list of forms under the FPHeader instruction is the first set of forms to
be placed at the top of each page.

Chapter 8 – FP Plus Destination

198

FpFooter - The FPFooter does the same thing that the FP Header does only it is a
Footer and is a list of forms that gets transmitted at the bottom of each page. That
does not mean that it will be transmitted to the bottom of the page, it only means that
it will get transmitted as the last set of forms that landed on a page. When FP Plus
realizes a page break has to happen, it is going to place the footer form list at the end
of the list forms on the page, before the page break and that may physically be any
place on the page. In fact, footers are not true page footers; they are really trailing
forms on every page.

Figure 131: Example of FpKeepOnSamePage

Overview

199

FpKeepOnSamePage - Causes Transall to predict if a page break would happen in-
between processing any of the forms under the FpKeepOnSamePage instruction. If
a page break is predicted to happen, then Transall will cause the page break to
happen in front of the forms in the Keep, so the forms will start on a new page and
be more likely to be kept together.

Figure 132: Example of FpPageBreak

FpPageBreak - This tells Transall to assume that a page break is going to happen
right here. On a page break you can tell Transall to adjust the default dot height from
that point forward in the document (Merge Set). The reason dot height adjustments
might be required is to handle a change of page orientation or maybe a change in
paper stock. Another use of FPPageBreak is to start a new section page count.
Behind the scenes the Transall layout processor holds two kinds of page counting
numbers, one is the total number of pages in the entire layout and the other way for
the total number of pages in this section. By default there is one section, but every
time you drop in a page break it can create a new section, which causes the section
page count to go back to one, but does not effect the total page count.

Figure 133: Example of FpAddTag

Chapter 8 – FP Plus Destination

200

FpAddTag - There may a time when you may need to add a tag to the tag pool that
does not have anything to do with a particular form. FPAddTag works the same way
FPAddForm only it allows you to add a tag.

Figure 134: Example of FpDataHeader

FpDataHeader - A special header designed for a FpDataGroup. If a page break
should happen while processing this Data Group, Transall will process this Data
Header. The Data Header is only active while the Data Group is processing. The
regular form Header will also be placed on the page along with the Data Header,
something like a sub header. These Data Headers can be nested and you could have
several Data Headers nested within several Data Groups.

Figure 135: Example of FpDataGroup

FpDataGroup - An FPDataGroup tells the Transall layout to loop on a particular
record, in the FPPlus data destination much like a Walk statement, and then perform
the instructions underneath the FPDataGroup statement, once for each row in the
record.

201

Chapter 9- Scripted Data Sources and Destinations

Scripted Data Sources and Destinations

OVERVIEW
Transall uses its Scripted Assistant to work with data sources and destinations that
aren’t supported by existing File, XML, or SQL options. This flexibility enables
Transall to work with types of data that weren’t anticipated by the authors.
Scripted data sources and destinations provide a framework of empty script
subroutines, where you’ll insert script, which will be called to perform operations on
the custom-scripted sources and destinations. The operations supported are as
follows:

• Open, Close, Prepare, GetNextRecord, and SetName at the source and
destination level

• Read, Write, and Update operations at the record level

SCRIPTED ASSISTANT
The Generic File (Scripted) icon isn’t normally displayed in the Add Source and Add
Destination dialogs; you’ll need to expand the list of available options.

To Access the Scripted Assistant
1. Select either Project>Add Source or Project>Add Destination.

Chapter 9 – Scripted Data Sources and Destinations

202

Transall displays the Add dialog.

Figure 136: Add Dialog Box

2. Enable (check) Show All.

Checking Show All displays infrequent data sources and destinations for your
selection.

Scripted Assistant

203

3. Select Generic File (Scripted).

Transall displays the Scripted Assistant.

Figure 137: Scripted Assistant

Scripted sources and destinations work on a file input/output model. Transall
attempts to make them operate as files so they are easier to use with existing File,
XML, or SQL sources and destinations.
The Scripted Assistant builds a framework of empty script subroutines that you
should fill with script to perform operations on the sources and destinations. These
subroutines will then be called by Transall’s LogicTrees and other data sources or
destinations.
The operations supported by the framework of subroutines built by the Scripted
Assistant are as follows:

• Open, Close, Prepare, GetNextRecord, and SetName at the source or destination
level

• Read, Write, and Update at the record level

Like other ones, Scripted sources and destinations interact with Transall via records.
These records act as a buffer to write to and read from scripted sources and
destinations.

Chapter 9 – Scripted Data Sources and Destinations

204

SCRIPTED SOURCES AND DESTINATIONS OPERATIONS
(EVENTS)
The following operations are supported at the data source or destination level.

The following operations are supported at the record level in a data source or
destination.

SCRIPTED SOURCE AND DESTINATION PROPERTIES
The following properties are supported at the data source or destination level.

The following properties are supported at the record level.

Operation Result
Open Called to initialize a data source or destination.
Close Called to de-initialize a data source or destination.
GetNextRecord Called to get the next piece of data from a data source.
Prepare Called before GetNextRecord to enable a data source to get ready to provide the next piece of

data from the data source.
SetName Not called directly by Transall. Provided so a name string can be set on the data source or

destination. This string can hold connection information for the data source or destination.

Operation Result
Read Called to load a record in Transall with data from a data source.
Write Called to write data from a record in Transall to a data destination.
Update Called to replace data in a destination with data from a record in Transall.

Property Meaning
Name The name of the data source. A data source name must be unique within a Transall project.
Description A comment about the data source or destination that helps to document the Transall project.
FileName The data string for the data source or destination. This string can hold connection information.
OpenMode The valid choices are as follow:

• Automatic—causes Transall to generate code to call the Open event (script) on the data
source or destination when its records are referenced in a LogicTree.

• Manual—prevents Transall from generating code to call the Open event (script) on the data
source or destination.

Property Meaning
Name The name of the record. A record name must be unique within a Transall project.
Description A comment on the record that helps to document the Transall project.

205

Chapter 10- XML Plus Data Source

XML Plus Data Source

OVERVIEW
Transall now supports a new Data Source called “XML Plus” that reads XML files
and makes their data available to other Transall data sources and destinations. The
XML Plus data source differs from the existing XML data source in its ease of use.
The XML Plus source does a better job of automatically organizing the XML data to
make it easier to use in Transall LogicTrees and data destinations. For most
applications XML Plus is going to be the preferred method to read XML into
Transall.

XML PLUS FEATURES
What makes the XML Plus source so ‘plus’ is its ability to scan a sample XML
document and automatically organize the document's elements into a hierarchy of
records and fields for use in Transall. What XML Plus does is look at the elements
in the XML document; elements that have child elements are treated as records and
elements that have no children are treated as fields on the records. The XML
document is then presented as a hierarchy of records with fields that is used easily
alongside traditional Transall data sources and destinations. Here is an example of a
typical XML Plus source

Chapter 10 – XML Plus Data Source

206

:

Figure 138: Sample XML Plus Source

In the XML Plus Assistant:

• Records are a hierarchical representation of the XML document's elements that
have child elements.

• Fields are usually elements that have no children. In this case the field's value is
populated from the character data for the element in the XML document.
Transall also looks for XML Attributes, CData, Processing Instructions and
Comments in the sample XML document provided for the data source. If any of
these items are found for an element fields are created to capture the items.

Part of the setup process for XML Plus is selecting the records and fields that
Transall will capture when processing the XML document. In the example the
records and fields with a check mark will be captured and populated with data by the
XML Plus data source. These records and fields will also be available in the various
Transall helper tools for mapping data. Not all records need to be selected but all that
are found in the sample XML document provided for the data source are selected by
default. Only the records and fields that provide data to Transall data destinations
and other logic used in the project need to be selected for capture by the data source.

XML Plus Features

207

ADDING RECORDS AND FIELDS
There are two ways to update an XML Plus data source with new records and fields.
The first way is to rescan a sample XML document for the source. This can be done
by updating the FileName property of the XML Plus data source to point to an
updated sample XML document that is representative of the XML documents you
will process with this data source and then select the Resource>Refresh from file
menu item to have XML Plus rescan the XML document looking for new XML
elements to create records and fields for in the XML Plus hierarchy of records. If the
updated sample XML document does not contain all the XML elements that have
records and fields defined in the XML Plus hierarchy, these records and fields are
not removed by the rescan activity. Should you need to remove records or fields;
records can be removed by clicking on the records and using the Resource>Record
Delete menu item. Fields can be removed by selecting the field and pressing the
DELETE key, or selecting the field row, clicking the right mouse button and
selecting Delete Row from the menu.
If the sample XML document provided for the data source does not contain all the
elements and data items that you want to add to the XML Plus hierarchy of records
you can add records and fields manually. This is the second way to update an XML
Plus data source with new records and fields. Records are added by opening the
XML Plus data source's XML Plus Assistant. Click on an existing record that this
new record will be placed under. Selecting the Resource>Record Add menu item
to bring up the Add XML element dialog:

Figure 139: Add XML Element Dialog Box

Chapter 10 – XML Plus Data Source

208

Enter a name for the new record in the “Element” field and select the types of data
you wish to capture for this element record. Character Data is selected by default. A
field will be predefined in the record for each type of data you select in this dialog.
The element name you enter will also be used to both name this record to Transall
and to name the element that Transall should look for in the XML document to
populate this record with data at run-time. Also note the value of the “Path” field in
the Add XML Element dialog. This field shows the list of parent elements in the
XML document's element hierarchy that Transall will search when scanning for data
to populate this record. For example, the following example displays the element
named “MyNewElement” that was added to the Transall XML Plus data source.

Figure 140: “MyNewElement” Add to the Transall XML Plus Data Source

At runtime, Transall will add a row to the MyNewElement record in the data source
when it reads the XML document and locate an element named “MyNewElement”
with character data under an element named “scanneddata”. The reason Transall
looks under the scanneddata element for the MyNewElement element is because of
the IdentifierValue property for the record.

ELEMENT IDENTIFIERVALUE PROPERTIES
The IdentifierValue property lists the element hierarchy path that Transall will use
when locating character data in an XML document to populate the MyNewElement
record in XML Plus. In this case the value “scanneddata.MyNewElement” will cause
Transall to look for character data under the “MyNewElement” element that is under
the “scanneddata” element in the XML document.

XML Plus Features

209

Special “mask” characters can also be used in the IdentifierValue property of a
record for added flexibility. These are the same characters that can be used in Like
conditional statements in Transall. When the Masked property is set to true Transall
uses 'Like' expression syntax to match an element's data in the XML element
hierarchy path to a record in the XML Plus data source. For example, an
IdentifierValue property of “*.MyNewElement” will map the data from an XML
element named MyNewElement found anywhere in the XML hierarchy under the
root element. This is because the '*' value in the Masked property means match one
or more characters so 'Anything.MyNewElement' is a match.

FIELD USAGE
When Transall scans a sample XML document that is representative of the XML
documents you will process in XML Plus it creates records to represent elements that
have child elements and fields to represent child elements that have no children. All
the fields automatically setup by XML Plus are configured to capture character data
from the XML document. The usage property for these fields is set to “Element”.
This means that the field will be populated with character data from a child element
of the record's element whose name matches that of the field. There are several field
usages that can be setup. Field usages other that element must be defined manually.
The available field usages are:

• Attribute:Populated with data from an XML attribute on the record's element,
whose name matches the name of the field.

• CData:Populated with data from XML CData under the record's element.

• CharacterData:Populated with XML Character Data under the record's
element.

• Comment:Populated with XML Comment Data under the record's element.

• Element:Populated with XML Character Data from an element whose name
matches the field name that is under the record's element.

• ProcessingInstruction:Populated with XML ProcessingInstruction Data under
the record's element.

All field usages except “Element” cause XML Plus to map data from the element
associated with a record to a field in the XML Plus record hierarchy. For example,
setting up a field with a usage of “Attribute” causes XML Plus to map attribute data
found in the XML document on the Record's element to a field in the XML Plus
record hierarchy. In the case of setting up a field with a usage of “Element” XML
Plus looks for an XML element under the record's element and maps the child
element's character data to the field. Only fields with a usage of Element look down
the XML hierarchy to a child element in the XML document under the record's
element.

Chapter 10 – XML Plus Data Source

210

TRANSACTION BOUNDARIES
One element in the data source must be selected as the “transaction boundary”
element. By default the transaction boundary element is selected as the root element
in the source. This element plays a special role in telling Transall how much of the
XML document to load in a single “transaction”. A transaction for XML Plus defines
the amount of XML data loaded into the XML Plus record hierarchy each time a
GetNextRecord event is processed on the XML Plus source. Transall uses a
progressive XML parser to load data from the XML document to the record
hierarchy. Because of this Transall does not have to read the whole XML document
into memory at once. The document can be read in chunks. This is useful when
processing large XML documents. In the case of the example, the “sqform” record
makes sense to be the transaction record. Transall will then read the XML document
into memory one sqform element at a time and populate the whole record hierarchy
in the XML Plus source for each sqform element it finds in the source XML
document. So if the source XML document has thousands or even millions of sqform
elements, Transall can process them, one at a time. This feature makes it possible for
XML Plus to process XML documents of unlimited size. An element does not need
to be selected (checked) to be used as the transaction boundary.

XML PLUS AND THE LOGICTREE
The Transall LogicTree interacts with XML Plus through a Walk statement just like
other data sources. What is different is that XML Plus reads a hierarchy of records
into the data source for each loop through the walk statement (see the “Transaction
boundaries” discussion in the preceding section). Once a transaction of data has been
read in to the source, the source's record hierarchy can then be traversed to process
the transaction data. The Transall LogicTree has a feature “Generate break
instructions” that will cause it to generate instructions to process the various records
of a data source. In the case of an XML Plus source, this feature generates a hierarchy
of record Walk statements. These statements will loop through each record in the
data source so it can be processed by the LogicTree. The following shows a
LogicTree with a Walk instruction on the XML Plus data source we have been using
as an example. The Walk instruction has had the “Generate break instructions”
feature applied to generate a hierarchy of record Walk statements for our XML Plus
data source:

Figure 141: Generate Walk Statement

XML Plus Features

211

After the Walk statement has been setup on the data source and the “Generate break
instructions” tool applied, other Transall instructions can be dropped in the
LogicTree to perform processing on each record in the XML Source.
For example, let's say we want to write the XML data back out as a delimited file.
To do this we add the delimited data destination to the Transall project. Use the
record “Copy From...” feature to build records in the delimited data destination
based on the records in the XML Plus source. The record Copy From feature also
generates Maps that map the data from the XML Plus source to the Delimited data
destination.
We then drop the Map and Output instructions on the LogicTree to write the
delimited file as so:

Figure 142: Delimited Output File

Note that instructions have now been placed under each Walk statement for the
records in the XML Plus record hierarchy. These instructions will be executed once
for each row in the hierarchy in the XML Plus data source. In this example these
instructions write the XML data to a Delimited file destination and cause the
Delimited file destination to write records to the delimited file.

XML PLUS SOURCE VS. XML SOURCE
XML Plus was developed to be easier to use than the original XML data source in
Transall. The XML Plus data source organizes and loads the XML data into a
hierarchy of Transall records. The original XML data source provides no such
hierarchical organization. The original XML data source in Transall is really a direct
implementation of SAX XML parsing. The original source “signals”, through record
breaks, as each XML data item is parsed from the XML document. So signals are
send for open and closing XML tags, String data, CData, Processing Instructions,
etc. The XML Plus data source “signals” only when it has loaded a section of an
XML document in to the data sources hierarchy of records. The size of the section,
which can be the whole XML document, is set by the Transall developer by selecting
a transaction element in the XML Plus data source. By reorganizing the XML data
into a hierarchy of records and fields the XML data is much easier to work with.
For 99% of XML read processing, the XML Plus data source should be used. The
original XML source can be used when the low-level SAX XML parsing nature of
the source is more advantageous to use.

Chapter 10 – XML Plus Data Source

212

XML PLUS SOURCE COMPONENT PROPERTY DETAILS

XML PLUS SOURCE
Name: The name of the data source in Transall.
Description: Comment field.
Autoencoding: True or False. When True causes Transall to assume an encoding of the

'Encoding' property.
Encoding: Default encoding to be used when the Autoencoding is set to True and

the XML document has no encoding defined.
FileAttributes: List of file-level XML data to be supported by this XML Plus source.

The can be set to one or more of the following values: Comment,
Inst, Markup, or Doctype. Each of these valuescause a record to be
added to the XmlPlus source to collect Comment,
ProcessingInstruction, Markup or Doctype XML tags that exist
outside the root XML element in the source XML document.

ErrorHandler: Automatic or Manual. When set to 'Automatic' this causes Transall to
automatically handle all normal processing errors on the XML source
(such as end of file). When set to 'manual' this causes Transall to ignore
all errors on the XML source leveling error checking to the Transall
developer.

FileName: Name of the file that XML Plus should scan to build the record
hierarchy for the data source. Also this is the default name of the file
that will be opened by XML plus at run-time when process XML input
files.

LimitSchemaRead: Number of tags to parse out when gathering information about an
XML document's structure. Zero means no limit. This limits the
amount of a sample XML document that Transall will load to
determine the structure of the data in the XML document.

NamespaceSupport
:

True or False. If True this indicates that the parser should parse tags
allocating them to their appropriate namespace in the XML document
(the URL for that particular node) when processing a document
containing namespaces. If this is False then the NameSpace parsing
features are bypassed.

OpenMode: Automatic or Manual. When set to Automatic this causes Transall to
automatically generate calls to the Open and Close events for the data
source when the source is referenced in a Transall LogicTree.

Resource: Resource type. Always “XML Plus”.
Transaction: This is the name of the Transaction Boundary element. This element

tells Transall how much of the XML document to load into the XML
Plus record hierarchy each time a GetNextRecord event is processed
on the XML Plus source. Transall read the XML document into
memory one Transaction Boundary element at a time and populate the
whole record hierarchy in the XML Plus source for each Transaction
Boundary element it finds in the source XML document.

XML Plus Source Component Property Details

213

Validation: Always, Automatic, Never. This controls the level of XML validation
Transall requests from the Xerces XML parser Transall is using.
Always enforces the highest level of validation. Automatic enforces a
lower level of validation where validation error can be ignored without
stopping the XML processing process are ignored. Never performs no
validation.

Chapter 10 – XML Plus Data Source

214

XML PLUS SOURCE RECORD

XML PLUS SOURCE RECORD FIELD

Name: The name of the record in Transall. Record names must be unique.
Transall may change the name of a record from the Element name that
the record represents to make it unique. Transall may also change the
name of a record to make the name valid for Transall. Record names
cannot contain spaces or special characters such as “)(*&^”.

Description: Comment field.
IdentifierValue: Lists the element herarchy path that Transall will use when locating

data in an XML document to populate the record's fields.
Masked: True or False. When True this indicates that the IdentifierValue

property should use Like syntax to match element hierarchy path to
data in the XML document when populating the record's fields.

Selected: Yes or No. When Yes this indicates that this record's fields will be
populated with data and available for reference in other Transall
components (Maps, LogicTrees, Scripts). When No this indicates that
this record's fields will NOT be available for reference in other
Transall components and that the Transall script generator should not
generate script for this record.

Component: Always “Record”

Name: The name of the record field in Transall. Field names must be unique
on a record. Transall may change the name of a field to make the name
valid for Transall. Field names cannot contain |spaces or special
characters such as “)(*&^”.

Description: Comment field.
Data Type: This is the Transall datatype that will be used to hold the data read from

the XML document for the field. See Transall DataTypes for more
information on DataType details.

Identifier: Lists the element hierarchy path that Transall will use when locating
data in an XML document to populate the record's fields. This property
is available only for Usage=Element fields.

Selected: Yes or No. When Yes this indicates that this record field will be
populated with data and available for reference in other Transall
components (Maps, LogicTrees, Scripts). When No this indicates that
this record field will NOT be available for reference in other Transall
components and that the Transall script generator should not generate
script for this field.

XML Plus Source Component Property Details

215

Usage: Element, Attribute, CData, CharacterData, Comment, None, or
ProcessingInstruction. Element means the field is populated with
XML Character Data from an element whose name matches the field
name that is under the record's element. Attribute means the field is
populated with data from an XML attribute on the record's element,
whose name matches the name of the field. CData means the field is
populated with data from XML CData under the record's element.
CharacterData means the field is populated with XML Character Data
under the record's element. Comment means the field is populated with
XML Comment Data under the record's element. None means the field
is not populated with XML data. ProcessingInstruction means the field
is populated with XML ProcessingInstruction Data under the record's
element.

Componet: Always “field”

Chapter 10 – XML Plus Data Source

216

217

Chapter 11- Event-based XML Data Source

Event-based XML Data Source

OVERVIEW OF EVENT-BASED XML SUPPORT
Transall supports both reading and writing XML files. For reading XML files in
event mode Transall utilizes a SAX API based XML parser, this type of XML parser
is an “event” based parser vs. a “tree” based parser. A tree-based parser compiles the
source XML document into an internal tree structure in memory and then allows an
application to query and tree for information. This is how the XML Plus data source
works. Conversely, an “event” based parser reports parsing events to the host
application and does not compile an internal tree of XML source data. The events
reported to the host application are things like “start document”, “start element”,
“end element”, etc. Tree based XML parsers are useful for a wide range of XML
applications, but tree parsers can put a great strain on system resources, especially if
the XML document being processed is large.

HOW EVENT-BASED XML PARSING WORKS IN TRANSALL
Transall interacts with XML data sources in a way very similarly to the way it
interacts with multi-record file data sources. To Transall each XML element in an
XML file is like a source record and each XML attribute on the XML elements are
like source fields on a record. Through the Transall editor GUI you setup Transall
data source records in an XML data source and associate these records with the
names of XML elements found in the source file. Transall supports an import feature
to help you scan a representative XML source file to acquire the names of XML
elements and attributes that can appear in the XML data source document.

SETTING UP AN EVENT-BASED XML SOURCE
To setup an event based XML data source in Transall start the Transall editor
(TRANEDIT.EXE) and select a Transall project for editing or start a new Transall
project.

Right Mouse
Click Menu

Chapter 11 – Event-based XML Data Source

218

Figure 143: Project>Add Source and Add Menus

Click on the Project>Add Source menu item or right-mouse click in the Component
Explorer to open the Add menu.

How Event-based XML Parsing works in Transall

219

Figure 144: Add Source Dialog Window

This will display the Add Source dialog window. In the dialog window, update the
Source Name to something meaningful for the data source.

Note You cannot use special characters or spaces in the name of a data source but you can
use underscores “_” and dashes “-”. It is often a good idea to suffix your data source
names with a meaningful value like “-Src” or “-ScHo”.

Chapter 11 – Event-based XML Data Source

220

Figure 145: Completed Source Dialog Window

How Event-based XML Parsing works in Transall

221

After typing in a source name, select the type of source from the Source Properties
list. For XML data sources select “XML”. Last, select a file name for this source,
either type in the file name or click on the button with three ellipses to display the
Select File dialog window, from this dialog window select or type in a new file name.
After selecting a file name click the “OK” button in the Add Source dialog window
to complete the XML source creation.

Figure 146: Component Explorer and Component Inspector

You will see your new data source listed in the Component Explorer under the
Sources component branch. In addition, the Component Inspector will show the
details of your new XML data source.

Chapter 11 – Event-based XML Data Source

222

ADDING A RECORD FOR AN XML DATA SOURCE
To add a record type to a Transall XML data source, you must first locate or set up
a new XML data source for the record.

Figure 147: Data Source XML Assistant

Once an XML data source has been selected, open the XML Assistant by double
clicking on the desired data source in the Component Explorer. Records can be
added to an XML data source by either directly setting up the record or by importing
record definitions from a representative XML document.

How Event-based XML Parsing works in Transall

223

Figure 148: Select XML Elements Dialog

Chapter 11 – Event-based XML Data Source

224

To import records from a representative XML document, select the
Resource>Record Import menu item. This will display a Select XML Elements
dialog that is populated with a tree showing the XML element hierarchy from the
XML file selected for the XML data source. Right mouse click on elements in the
hierarchy to select groups of elements or open up the XML element hierarchy tree.
In the lower part of the Select XML Elements dialog select the types of data that
Transall should collect from the XML document. Transall can collect the following
data item types Attributes, CData, Character Data, Comments, and Processing
Instructions. For each data item type, Transall sets up a record in the XML data
source. These records work just like records from a multi-record type source file.
When you build a LogicTree that reads this XML data source, you should set up Case
statements under your Walk or Input statement for this XML data source. Transall
will trigger a record found “Case” statement in the Transall LogicTree as it parses
out the XML document.

Figure 149: Component Inspector

After adding records to the XML data source, you can change the record names in
the Transall Component inspector to a meaningful name for each record.

Note A record name cannot contain special characters or spaces but can contain underscores
“_” and dashes “-”.

How Event-based XML Parsing works in Transall

225

Figure 150: XML Assistant with Records

Once the records have been setup, you can add fields (or more fields) to the records.
To add a field, enter the field name into the Name column of the field row with an
asterisk in the row border. Press the tab key to move to the Usage column and select
a usage type for the field. Press the tab key to move to the Datatype column and
select a data type for the field. Setup one field on each record for each XML Attribute
that Transall can expect to find in the XML document.

Figure 151: Moving a row in the XML Assistant

Chapter 11 – Event-based XML Data Source

226

If you want to move a field up or down on the record you can do so by clicking in
the gray area to the left of the field’s number column in the XML Assistant. This will
select the field’s row in the XML Assistant. With the row selected, click and hold the
left mouse button, then drag the field from the gray area to the left of the field’s
number column to a new location in the list of fields for the record. You will see a
colored line in the list of record fields as you perform the drag that indicates where
the field will go when you drop the field.

Figure 152: Record Selected in XML Assistant

After adding all the fields to the record and arranging the field order, click on the
record name in the XML Assistant.

Figure 153: Record Properties in Component Inspector

How Event-based XML Parsing works in Transall

227

This will cause the record’s properties to be displayed in the Component Inspector.
For XML data sources, a record ID field needs to be defined for each record. If the
record was defined via an import from a representative XML document the record
ID property will already be filled in with the name of the XML element that triggers
this record. If the record was defined by hand, you can define a record ID by setting
the IdentifierValue property in the Component Inspector. At run-time Transall will
use this IdentifierValue value to recognize data from the XML file as belonging to
this master record.

Chapter 11 – Event-based XML Data Source

228

229

Chapter 12- XML Data Destinations

XML Data Destinations

SETTING UP AN XML DESTINATION
Transall interacts with XML destinations via a hierarchy of records that are setup in
the XML destination. This record hierarchy in the XML destination describes the
hierarchy of elements that can be written to the XML destination. A record hierarchy
such as this is sometimes referred to as a Document Object Model (DOM) and in
fact, the Transall data destination is DOM based.
To better illustrate how XML data destinations work we will contrast them to a more
traditional Transall data destination, delimited files. For example, with a delimited
file destination, you set up one record for each record type (i.e., grouping of fields)
that Transall can write to the delimited file. The same is true for XML destinations,
only XML files do not have records, they have a thing very much like a record called
an Element. For the purpose of this discussion, records and elements are equivalent
with one important difference: The elements in an XML file are in a hierarchy with
one special “Root” element that is at the top of the hierarchy.
When you set up an XML destination in Transall, you set up one record for each
XML element that Transall can write to the XML file. Now, with a delimited file,
your LogicTree will probably perform a Map instruction to populate an output record
buffer and then perform an Output instruction to write the record to the delimited
file. XML files work the same way, except that XML is not written out one element
at a time: The whole element hierarchy is written out all at once to form an XML file
(sometimes called an XML document). Maps that target XML destination records
have an extra property, “Auto Insert”.
The Auto Insert property indicates that Transall should automatically insert a row
into the XML destination’s record hierarchy in memory before mapping over the
data to the record. This lets a Map not only populate an XML element record but also
build out the XML element data hierarchy by adding new rows to the XML
destination’s cache of data. With an XML destination, you will often have many
Map instructions that populate the XML hierarchy of data and one Output statement
that flushes the data to an XML output file.

Chapter 12 – XML Data Destinations

230

For example, let say we have an XML destination that has three elements, these
elements are “Root”, “Parents” and “Children” and they are in a hierarchy that looks
like the example below:

Figure 154: Example of Hierarchy

CHILDREN3

CHILDREN2CHILDREN2

ROOT

PARENT1

CHILDREN1

PARENT2

CHILDREN1

Therefore, the Root element can have many Parents elements and each Parent can
have many Children elements.
Let’s also say that our actual data in the hierarchy looks like:

Figure 155: Example of XML Hierarchy

ROOT

PARENT

CHILDREN

Setting up an XML Destination

231

This hierarchy has one Root with two Parents. The first Parents row has two Children
rows and the second Parents row has three Children rows. The LogicTree that moves
data into the records for this XML destination will perform a Map of the first Parents
element row then perform two Maps targeting the Children element rows. This sets
up the first Parents and its two Children. Then the LogicTree will Map the second
Parents element row and perform three Maps targeting the Children element rows.
This second set of three Children element rows will be placed in the data hierarchy
under the most recent Parent element row that was just inserted. Now Transall has
One Root element with two Parents elements, the first Parents element has two
Children elements and the second Parents element has three Children elements. Note
that you do not have to Map the Root element. XML only allows one and only one
row in the Root element so Transall pre-Maps this Element row for you.
After all the data has been placed in the XML data destination the destination can be
instructed to write an XML document from the data via an Output statement. The
Output statement will write the XML document and clear the data from the XML
destination. It will not clear the DOM structure from memory, just the data in the
DOM.
The Output instruction behavior for XML destinations brings another import
difference between XML and other traditional data destinations to light. When
Transall process an Output statement against an XML destination a whole, complete
XML document is written. If the file that the XML destination is pointing to already
has data in it that file is overwritten. So, XML destinations do not append to a file as
each Output instruction is processed. XML destinations overwrite the output file as
each Output instruction is processed. This is because the XML specification says it
is illegal to have more than one XML document in an XML file.

Chapter 12 – XML Data Destinations

232

ADDING A RECORDS TO AN XML DATA DESTINATION
To add a record type to a Transall XML data destination, you must first locate or set
up a new XML data destination for the record. Once an XML data destination has
been selected, open the XML Assistant by double clicking on the desired data
destination in the Component Explorer. Records can be added to an XML data
destination by either directly setting up the record or by importing record definitions
from a representative XML document.

Figure 156: Resource>Record Import Menu

To import records from a representative XML document select the
Resource>Record Import menu item.

Figure 157: Select XML Elements Dialog Box

Setting up an XML Destination

233

This will display a Select XML Elements dialog that is populated with a tree showing
the XML element hierarchy from the XML file selected for the XML data
destination.

Figure 158: Select or Open Hierarchy Element Menu

Right mouse click on elements in the hierarchy to select groups of elements or open
up the XML element hierarchy tree.

Note This dialog box can be made larger, by moving the mouse pointer to any dialog box
edge, when the mouse pointer changes to a double headed arrow, click and hold, the
left mouse button, and drag to the desired size, then release the mouse button.

Chapter 12 – XML Data Destinations

234

Figure 159: Hierarchy Elements Open and Selected

In the lower part of the Select XML Elements dialog select the types of data that
Transall should buffer for the XML document. Transall can buffer the following data
item types in an XML destination: Attributes, CData, Character Data, Comments,
and Processing Instructions. For each data, item type Transall sets up a record in the
XML data destination. You arrange these records in a tree that describes the
hierarchy of elements that can be written to the XML destination. You can move
items around in the hierarchy tree by dragging and dropping items to new locations
in the tree. You can also change the record names in the Transall Component
inspector to meaningful names for each record.

Note A record name cannot contain special characters or spaces but can contain underscores
“_” and dashes “-”.

Setting up an XML Destination

235

Figure 160: Adding Fields to Record

Once the records have been setup, you can add fields (or more fields) to the records.
To add a field, enter the field name into the Name column of the XML Assistant on
the field row with a star in the row border. Press the tab key to move to the Usage
column and select a usage type for the field. Press the tab key to move to the
Datatype column and select a data type for the field. Setup one field on each record
for each XML Attribute that Transall is to write to the XML document.

Figure 161: Moving a row in the XML Assistant

Chapter 12 – XML Data Destinations

236

If you want to move a field up or down on the record you can do so by clicking in
the gray area to the left of the field’s number column in the XML Assistant. This will
select the field’s row in the XML Assistant. With the row selected, you can drag the
field from the gray area to the left of the field’s number column to a new location in
the list of fields for the record. You will see a colored line in the list of record fields
as you perform the drag that indicates where the field will go when you drop the
field.

Figure 162: Record Properties in Component Inspector

After adding all the fields to the record and arranging the field order, click on the
record name in the File Assistant. This will cause the record’s properties to be
displayed in the Component Inspector. For XML data destinations, a record ID field
needs to be defined for each record. If the record was defined via an import from a
representative XML document the record ID property will already be filled in with
the name of the XML element that triggers this record. If the record was defined by
hand, you can define a record ID by setting the IdentifierValue property in the
Component Inspector. At run-time Transall will use this IdentifierValue value to
send data from this record to the XML file.

237

Chapter 13- Using Unicode

Using Unicode
Both Docuflex and Transall let you process text information in Unicode. Unicode is
a standard designed to allow text and symbols from the world’s various writing
systems to be consistently represented and manipulated. The Unicode support in
Docuflex and Transall makes dealing with Unicode as seamless as possible.
Unicode support in Docuflex and Transall extends to all text information in the form
of content, data, and logic control. It includes Unicode text processing by all the GUI
controls that display information or allow information to be entered into the system.
It also extends to all configuration files and all files in general, with support for
writing Unicode values in both the names of files and in file contents.
Docuflex and Transall automatically up-convert non-Unicode text values to
Unicode when reading them into the system, which enables them to be mixed with
other Unicode text and seamlessly provides backward compatibility with legacy
content and data sources.
Docuflex and Transall then automatically down-convert Unicode values into the
desired format of output targets when writing information out of the system. This
provides the significant benefits of Unicode to Docuflex and Transall users while
minimizing Unicode’s complexities.
Docuflex and Transall hold text information as Unicode by representing the
information in memory in the Unicode Universal Character Set 2 (UCS-2LE)
encoding format. When Docuflex and Transall interact with text information sources
that are not already in a Unicode encoding format, the text is changed from its
original format into a Unicode format as it is read into the system.
When Transall writes textual information into data files, the Unicode text values are
converted into a format that is supported by the target file.

TRANSALL AND UNICODE
Transall carries all data defined as variable length strings in the same Unicode format
as that used by Docuflex. However, data defined to Transall as fixed length strings
is not carried as Unicode by default, but is treated as single-byte data. This lets
Transall 12.1 projects that work with COBOL or undelimited data sources on single-
byte structured data function as they did before support for (multi-byte) Unicode was
introduced.
To further refine this behavior, support for two new string type declarations have
been added. These make it possible to indicate the organization of variable or fixed
length string declarations explicitly as either multi-byte Unicode or single-byte
native data. These new data type declarations are Unicode and Binary.

Chapter 13 – Using Unicode

238

You can override the Binary to Unicode to Binary conversion behaviors using the
following functions:

You can use these values for the encoding or code page flag:

Type Description
Binary You can use this data type declaration instead of String declarations when you want to carry variable length string

data as a set of single byte native values (like was the case before the introduction of Unicode support).
When assigning values from String data types to Binary data types, Transall assumes the code page of the target
Binary string is ANSI (Windows 1252) and converts the Unicode values to single byte values as needed.

Unicode Use the Unicode data type when you want to carry fixed length text data not as single byte values but as a fixed
length string of multi-byte Unicode text.
When assigning a Binary data type value to a Unicode string, Transall converts the binary data to Unicode assuming
the data was from the Windows 1252 code page.

Function Description
CUnicode This function takes a Binary data type string and either an encoding or code page flag. The flag indicates the

assumed source encoding or code page of the byte data when it is converted to Unicode.

CByte This function takes a Unicode data type string and an encoding/code page flag. In this case the flag indicates the
encoding or code page that the Unicode data should be converted to when it is converted to a Binary string.

Unicode encodings UTF-8, UTF-16, UTF-16LE, UTF-16BE, UCS-2, UCS-2LE, UCS-2BE, UCS-4, UTF-32, UCS-4LE, UTF-32LE,
UCS-4BE, UTF-32BE, UTS-6

Windows code
pages

W_CENTRAL_EUROPE, W_CYRILLIC, W_LATIN1, W_GREEK, W_LATIN5, W_HEBREW, W_ARABIC,
W_BALTIC, W_VIETNAMESE, W_THAI, W_JAPANESE, W_KOREAN, W_S_CHINESE, W_T_CHINESE

DOS code pages D_USLATIN, D_ARABIC1, D_GREEK, D_BALTIC, D_LATIN1, D_LATIN2, D_CYRILLIC, D_TURKISH,
D_LATIN1EURO, D_PORTUGUESE, D_ICELANDIC, D_HEBREW, D_CANADIANFRENCH, D_ARABIC,
D_NORDIC, D_CYRILLICRUSSIAN, D_GREEK2, D_THAI, D_ARABICASMO

ISO code pages ISO_8859_1, ISO_8859_2, ISO_8859_3, ISO_8859_4, ISO_8859_5, ISO_8859_6, ISO_8859_7,
ISO_8859_8, ISO_8859_9, ISO_8859_10, ISO_8859_11, ISO_8859_13, ISO_8859_14, ISO_8859_15,
ISO_8859_16

Other code pages O_KOI8R, O_KOI8U, O_KOI8RU, O_KOI8UNI, O_BIG5, O_GB12345, O_GB2312, O_JIS0201, O_JIS0208,
O_JIS0212, O_JOHAB, O_KSC5601, O_KSX1001, O_WANSUNG, O_GB18030

EBCDIC code
pages

E_DFXDEFAULT, E_USCANADA, E_LATIN5TURKISH, E_INTERNATIONAL, E_GREEK, E_HEBREW,
E_ROECELATIN2, E_JAPANESEKATAKANA_EX, E_ARABIC, E_KOREAN_EX, E_CYRILLIC_RUSSIAN,
E_LATIN1_EURO, E_CYRILLIC_S_EUROPE, E_USCANADA_EURO, E_GERMANY_EURO,
E_DENMARKNORWAY_EURO, E_FINLANDSWEDEN_EURO, E_ITALY_EURO, E_SPANISH_EURO,
E_UK_EURO, E_FRANCE_EURO, E_INTL_EURO, E_ICELAND_EURO

239

DATA SOURCES AND DESTINATIONS

Target = CUnicode(Source.Field1, UCS-2LE)

Each of Transall’s data sources and destinations can convert data automatically into
and out of Unicode, as needed by the source or destination. This table outlines the
Unicode support details for Transall.

ASCII, EBCDIC AND UNICODE
There are no issues when you are up-converting to Unicode from legacy data sources
in ASCII or EBCDIC encoding formats. The Unicode standard supports all the
character points represented in these legacy encoding formats. There is, however, the
possibility that Unicode encoded text may not successfully down-convert to a
particular legacy encoding format such as ASCII or EBCDIC because of limitations
in the physical structure of some legacy formats.

Type of file Description
Delimited The File Assistant now shows extra values for the CharacterSet property. These values supply Transall with

optional encoding information for data being read or written.

COBOL/Fixed/VSAM The COBOL and fixed file sources and destinations assume all text data is byte oriented. To either place or
retrieve Unicode encoded values in fields of these sources and destinations, you must use the CByte or
CUnicode conversion functions
For example, if you have a COBOL data source with a 10-character field of Display usage type named Field1
and this field is loaded with data from a file that contains double-byte UCS-2LE Unicode values, then the
values can be decoded to Unicode and extracted from the field with an expression such as:

You can use this expression in a Transall data map or as a standalone instruction. It tells Transall to treat
the binary value in Source.Field1 as data that is encoded in the Unicode double-byte UCS-2LE format. The
CUnicode function decodes the binary data into Transall’s internal Unicode format and then assigns the
decoded value to the Target variable as a Unicode value.

PPS The file format used by PPS contains data Transall assumes is encoded in the Windows 1252 code page
before it is converted to Transall’s internal Unicode format.

PrintStream The PrintStream data source contains data whose encoding is dictated by the print stream type. Transall
automatically converts the data from the supported print stream types to Transall’s internal Unicode format.

SQL data SQL data sources and destinations now natively support Unicode through ODBC and JDBC database
connectors.
The legacy support for connecting to native database drivers has not been updated with support for
transporting Unicode values via Transall. Instead these values are converted to and from single-byte ASCII
or EBCDIC as needed by the legacy driver’s APIs. The legacy native driver support continues to operate as
it did before Unicode support was added to Transall.

XML The XML source and destination already natively support transporting encoded Unicode values. Be sure,
however, to select an encoding declaration such as UTF-8 for XML destinations that support transporting all
possible Unicode values that Transall can write to the XML document.
If you select an encoding declaration such as LATIN1, an error appears if an attempt is made to write a
Unicode code point to the XML document that can not be supported by the LATIN1 encoding scheme.

Docuflex The Docuflex data destination natively supports Unicode. Unicode values written to Docuflex data files
(DDF) are encoded in UTS-6. Use either the Docuflex built-in data viewer or the DPAD tool to inspect
Unicode encoded values in DDF files.

Documaker FP The Documaker FP (Documerge VRF file) data destination assumes that all text data is byte-oriented
EBCDIC. Transall automatically down-converts all Unicode values to EBCDIC for transmission in the VRF
file.
If Transall cannot down-convert a Unicode character value, it places a question mark (?) in the VRF file as
a place holder for the character value that could not be converted to EBCDIC.

Chapter 13 – Using Unicode

240

For example, Unicode data represented as UCS-2LE, or double byte, supports a
universe of 65,536 distinct character points that are defined as the Unicode Basic
Multilingual Plane (BMP). This Unicode encoding format specifies that each
physical character is represented by two bytes. The ASCII and EBCDIC encoding
formats specify that each physical character be represented by only one byte,
meaning that the ASCII and EBCDIC encoding formats only define a universe 255
possible character points. Because of the limitations of these single-byte encoding
formats, it is possible that character points (outside of English in this case) supported
by Unicode can not be converted into the legacy encoding format. This is because
legacy single-byte formats do not have the physical capacity to represent all the
character points the Unicode encoding formats can represent.
When Docuflex and Transall encounter a problem converting from Unicode to a
legacy format, a question mark (?) is placed in the converted results to represent the
place holder of a character that could not be down-converted properly.

EDITING CONFIGURATION FILES WITH UNICODE
Use the DPAD file editing tool, included in version 12.1, to place hand-edited text
into configuration files used by Docuflex and Transall, such as the INI and DDE
files. DPAD displays and edits text in UCS2 mode, which lets you directly enter
Unicode text, but saves the files in UTS-6 format for use by Docuflex or Transall.
In most cases you can update these files with Unicode values using the Docuflex
GUI tools such as the Environment Manager. You only have to use DPAD to update
these files if Unicode values need to be placed in them in ways that are unsupported
by the GUI tools in Docuflex. If only standard ANSI (Windows 1252) data is in the
files, then you can use any editor, such as Windows Notepad, to update the files
outside of Docuflex.
To type Unicode character values into DPAD, or any of the GUI elements of
Docuflex and Transall, you must enable Windows International support. This
support includes a Windows feature called the Input Method Manager. This manager
lets you remap the keys on a standard Windows keyboard for a particular locale. The
remapping setup for a particular locale is called an Input Method Editor (IME) and
it allows Unicode characters to be typed directly into all internationalized
applications such as Docuflex and Transall from a standard Windows keyboard.

241

Chapter 14- Transall Java Scripting Support

Transall Java Scripting Support

OVERVIEW
Transall now supports calling Java applications from Transall script in a way similar
to Transall's support for calling ActiveX objects. Transall does not support Java
script directly mixed in with Transall script, but it does support calling functions in
Java applications from Transall script. Transall accomplishes this by loading the
Java Virtual Machine (JVM) from Sun Microsystems and interacting with it through
the Java Native Interface (JNI).
Transall can load a Java application to a JVM, pass and receive parameters with the
application, call public subroutines in the application, and access public data
members in the application.
Transall does not ship with the JVM from Sun Microsystems. This, along with the
Java Run-Time Environment (JRE), can be downloaded from Sun at “http://
java.sun.com/getjava”.

JAVA SUPPORT SCRIPT SYNTAX OVERVIEW
The following functions are provided by Transall to load and control Java
applications from Transall script:

Function Explanation
CreateJVM Loads a JVM from Sun Microsystems and returns a handle to the

Virtual Machine.
CreateJObject Loads a Java application to a Virtual Machine, optionally passes

parameters to the Java application's class constructor and returns a
JObjectVariable handle to the Java application.

JObjectVariable.Method This syntax using a JObjectVariable calls a method in a Java
application. This syntax can also be used to retrieve a public member
value from a Java application.

Set JObjectVariable = Nothing Releases a Java application loaded on a JObjectVariable.
ReleaseJVM Releases the JVM.

SetJavaVMOption This syntax sets various options on the JVM, such as the default path
from which to load Java Class and JAR modules.

SetJavaOption This syntax sets various options on a Java object such as the path from
which to load Java Class and JAR modules for a specific Java Object.
This syntax must be used when using JAR files.

Chapter 14 – Transall Java Scripting Support

242

Example Script Calling a Java Application
Let's say we have a Java application that we want to call a method on. The following
is the “Hello World” Java example from Sun Microsystems the Javatm Tutorial:

We can use the following Transall script to load and call this Java application’s
HelloWorld publish method:

Java data types vs. Transall data types
Java supports a set of data types that overlap with Transall's native data types. The
following table shows a mapping of Transall's primitive data types to Java's data
types:

/**
 * The HelloWorldApp class implements an application that
 * simply displays “Hello World!” to the standard output.
 */
class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println(“Hello World!”); //Display the string.
 }
}

Dim hJavaVM As Long
Dim JObjHellowWorld As JObject

'Load a Java Virtual Machine
hJavaVM = CreateJVM(“C:\Java\j2sdk1.4.0_01\lib”, “C:\Java\j2sdk1.4.0_01”)

’Set the Java Virtual Machine options
Set JavaVMOption(2, “C:\Java\MyClasses.jar”)

'Load a Java Application to the Virtual Machine
Set JObjHellowWorld = CreateJObject(hJavaVM, “Main-Class”)

'Call the Hello worldmain method
JobjHellowWorld.main()

'Release the Java Application
Set JObjHellowWorld = Nothing

'Release the Java Virtual Machine
ReleaseJVM(hJavaVM)

Transall Data Types Java Data Types
String java.lang.String

Integer short

Long int

Float float

Double double

JObject java.util.Date

Overview

243

In order to use Java date-time values, a java.util.Date object must be created as a
JObject in Transall. Just passing a Transall DateTime variable to a Java method
expecting a java.util.Date will not work.
The following table shows a recommended mapping of Java data types back to
Transall data types:

To help convert Transall data to Java data Transall supports a “cast” syntax. Casting
a value converts it from Transall's internal format to the format Java expects. For
example, if I have a Transall Long variable 'lMyLong' that I want to pass to a Java
Method 'MyJavaMethod' and this method expects the parameter to be a Java Long,
I can cast the Transall variable in the script expression passing the value to Java, like
so:

JavaObject.MyJavaMethod((JLong)lMyLong)

The '(JLong)' syntax preceding the lMyLong variable reference is the cast syntax.
The cast will cause Transall to convert the lMyLong 32bit signed integer to a 64bit
signed integer that the Java method MyJavaMethod expects as a parameter. Incorrect
casting will result in an error thrown by the JVM. Here are some casting examples.

Java Data Types Transall Data Type
java.lang.String String

boolean (8bit unsigned) Integer (16bit signed)

byte (8bit signed) Integer (16bit signed)

char (16bit unsigned) Long (32bit signed)

short (16bit signed) Integer (16bit signed)

int (32bit signed) Long (32bit signed)

long (64bit signed)

float (32bit floating point) Float (32bit Floating point)

double (64bit floating point) Double (64bit floating point)

java.util.Date JObject

Java Data
Type

Java Cast in
Transall Usage in Transall Example

long (JLong) (JLong)Long Dim lNumber As Long
lNumber = 555-55-5555
hJava.getSSN((JLong)lNumber) or hJava.setSSN((Jlong)8)

int (JInt) (JInt)Integer
(JInt)Long

Dim iNumber As Integer
iNumber = 8
hJava.getEmployeeId((JInt)iNumber) or
hJava.setEmployeeId((JInt)8)

byte (JByte) (JByte)String * 1 Dim sGender As String * 1
sGender=“F”
hJava.gender = (JByte)sGender

Chapter 14 – Transall Java Scripting Support

244

Java Object Data Types
Transall supports non-primitive Java Platform Class data types by defining them as
JObjects via the CreateJObject() function. For example, Transall allows the user to
pass a string to Java by using the standard “String” Transall data type but, you would
be unable to manipulate the value as a java.lang.String object. You can create a
“java.lang.String” object by calling the CreateJObject() using “java.lang.String” as
the sClassID. See the following example:

This technique of defining non-primitive Java data types as JObjects must be used to
create Java arrays. For example:

char (JChar) (JChar)String * 1 Dim sMidInitial As String * 1
sMidInitial = “L”
hJava.status = (JChar)sMidInitial

boolean (JBool) (JBool)Integer DimiHasDependents As Integer
iHasDependents=“L”
hJava.setDependentStatus((JBool)iHasDependents)
or
hJava.setDependentStatus((JBool)1)

short (JShort) (JShort)Integer Dim iAge As Integer
iAge = 29
hJava.setAge((JShort) iAge) or hJava. setAge ((JShort)29)

 float (JFloat) (JFloat)Float Dim fSalary As Float
fSalary = 20,500.89
hJava.setSalary(fSalary)
or
hJava.setSalary((JFloat)20,500.89

double NONE Double Dim nAvgSalary As Double
nAvgSalary=20,500.812349
hJava.avgSalary(nAvgSalary)

Java Data
Type

Java Cast in
Transall Usage in Transall Example

Dim hJavaVM As Long
Dim StringObj As JObject
Set JavaVMOption(2, “C:\Java\MyClasses.jar”)
hJavaVM = CreateJVM(“C:\Java\j2sdl1.4.0_01\lib”,
“C:\Java\j2sdk1.4.0_01”)

Set StringObj = CreateJObject(hJavaVM, “java.lang.String”, “Init value for Java
string”)

or

Dim sStringValue As String
sStringValue = “This is initial value of the Java string”
Set StringObj = CreateJObject(hJavaVM, “java.lang.String”, sStringValue)

Dim ZipCodeArray As JObject
Set JavaOption (2, “C:\Java\MyClasses.jar”)
Set ZipCodeArray = CreateJObject(hJavaVM, “java.lang.reflect.Array”, (JLong)75060,
(JLong)75061, (JLong)75094, (JLong)76006)

Overview

245

This example creates a Java array of Longs and initializes the array with the values
75060, 75061, 75094, and 76006. Here is a more complex example:

The preceding example creates a Java array of Java objects.
Java objects may also be used as wrappers for primitive data types. For instance, a
Java object representing the “Long” primitive data type, would look like:

Running Java Class Applications
If the Java application you wish to control is located within a single Java class file
you can call the “main” method of the main class after the Java application has been
loaded to run it from Transall script. In this case the JVM must be initialized via the
SetJavaVMOption function to set the classpath to the directory in which that class
module is located. See the SetJavaVMOption function in Transall Java Support
Syntax Details on page 247.
For example, if the Java class, “Enrollment” has the main method and is located in
C:\Java\MyClasses directory, then the call to CreateJObject() without passing any
value to the constructor would be:

Then to invoke the main method to enroll “Batman”, the user would call the Main
method as follows:

hEnrollmentObj.main()

This technique only works if all class files are located within a single Java .class file.
If the application is located within a jar file, the user must utilize a separate calling
convention.

Dim StudentObj1 As JObject
Dim StudentObj2 As JObject
Dim StudentObj3 As JObject
Dim StudentObj4 As JObject
Dim ObjArray As JObject

Set JavaOption (2, “C:\Java\MyClasses.jar”)
Set StudentObj1 = CreateJObject(hJavaVM, “classes.Student”, “Wonder Woman”)
Set StudentObj2 = CreateJObject(hJavaVM, “classes.Student”, “Batman”)
Set StudentObj3 = CreateJObject(hJavaVM, “classes.Student”, “Spider-Man”)
Set StudentObj4 = CreateJObject(hJavaVM, “classes.Student”, “The Spawn”)

Set ObjArray = CreateJObject(hJavaVM, “java.lang.reflect.Array”, StudentObj1,
StudentObj2, StudentObj3, StudentObj4)

Dim LongObj As JObject
Set LongObj = CreateJObject(hJVM, “java.lang.Long”, (JLong)lParam)

Dim hJavaVM As Long
Set JavaVMOption(1, “C:\Java\MyClasses”)
hJavaVM=CreateJVM(“C:\Java\j2sdl1.4.0_01\lib”)

SetJavaOption(1,”C:\Java\MyClasses”)
Set hEnrollmentObj = CreateJObject(hJVM, “Enrollment”)

Chapter 14 – Transall Java Scripting Support

246

Running Java Applications Located in JAR Files
When the Java application is located within a JAR file, you must hard-code the word
“Main-Class” as the sClassID when calling CreateJObject() to load the application.
Also, the JAR file must have been previously compressed using the “Main-Class”
option to specify the class that contains the main method. The only object that needs
to be loaded is the one that contains the main method. For example if the class
“Enrollment” has the main method, then the call would look like this:

The SetJavaOption function must be called to tell the JVM that this class is located
within a JAR file. “Main-Class” tells the JVM to look for this option in the manifest
file located within the JAR file and the subsequent call to “main” actually runs the
application.

Get and set Java Object Field Values
A Java object public member field value can be retrieved via the following syntax:
FieldValue = hJavaObject.FieldName

A Java object public member field value can be set via the following syntax:
hJavaObject.FieldName = FieldValue

Dim hJavaVM As Long
Set JavaVMOption(1, “C:\Java\MyClasses”)
hJavaVM=CreateJVM((“C:\Java\j2sdl1.4.0_01\lib”)
SetJavaOption(2,“C:\Java\MyCMyAppclasses\classes.jar”)
Set hEnrollmentObj = CreateJObject(hJavaVM, “Main-Class”)
hEnrollmentObj.main()

Overview

247

Transall Java Support Syntax Details

SetJavaVMOption (ByVal lOptionType As Long, ByVal sOptionValue As
String) As Long
SetJavaVMOption sets various JVM startup options. For these options to be in effect
SetJavaVMOption must be called prior to CreateJVM.

• lOptionType is a value indicating the type of option to set. The type codes are
indicated below:

• sOptionValue is the string value of the option to set.

CreateJVM (ByVal sJVMLibPath As String, ByVal sJREPath As String)
As Long
CreateJVM loads a Java Virtual Machine (JVM) and returns a handle to it.
CreateJVM will return a non-zero value for a successful JVM load and zero for
failure.

• sJVMLibPath is the directory where the JVM library (jvm.lib) resides.

• sJREPath is the directory of the Java Run-Time Environment (JRE) and its
accompanying folders.

Option

Java
Equivalent

Option
Type
Code

Description

Example

CLASSPATH -cp
-classpath

1 Sets the classpath (location of
the user's classes). Several
paths may be included
separated by a semi-colon.

SetJavaVMOption(1,“C:\Java\classes”)

JARPATH -jarpath 2 Sets the jarpath
(location of the user's Java files
in jar format). Several paths
may be included separated by a
semi-colon.

SetJavaVMOption(2,“C:\Java\classes\coll
ege.jar;C:\Java\MyApp\MyApp.jar”)

VERIFY -verify 3 Specifies whether to run the
byte code verifier on all loaded
classes.

SetJavaVMOption(3,“TRUE”)

VERIFYREMOTE -verifyremote 4 Runs the verifier on all code
that is loaded into system via a
classloader. This is the default
for the interpreter.

SetJavaVMOption(4,“TRUE”)

NOVERIFY -noverity 5 Turns verification off. SetJavaVMOption(5,“TRUE”)

XMS -Xms 6 Specifies how much memory is
allocated for the heap when the
JVM starts.

SetJavaVMOption(6, “1064”)

XMX -Xmx 7 Specifies the maximum heap
size (value in bytes, with a
value greater than 1000) the
Java interpreter will use for
dynamically allocated objects
and arrays.

SetJavaVMOption(7, “1064”)

Chapter 14 – Transall Java Scripting Support

248

SetJavaOption (ByVal lOptionType As Long, ByVal sOptionValue As
String) As Long
SetJavaOption sets various Java object instantiation options. For these options to be
in effect SetJavaOption must be called prior to CreateJObject.

• lOptionType is a value indicating the type of option to set. Options are:

• sOptionValue is the string value of the option to set.

CreateJObject (ByVal hJVM As Long, ByVal sClassID As String [,
parameter, parameter,...]) As JObject
CreateJObject instantiates a Java object and returns a handle to the object instance.

• hJVM is a handle to a JVM returned from a call to CreateJVM.

• sClassID is the name of the Java class to load (instantiate). If the class is located
within a package, then the sClassID value must be prefixed by the package
name. For example, if the class “Student” was located within the package
“classes”, then the sClassID string should be “classes.Student”.

• [, parameter, parameter, ...] are values passed to the class constructor.

ReleaseJVM (ByVal hJVM As Long)
ReleaseJVM releases the Java Virtual Machine (JVM).

• hJVM is a handle to the JVM returned from a call to CreateJVM.

Option

Java
Equivalent

Option
Type
Code

Description

Example

CLASSPATH -cp
-classpath

1 Sets the classpath (location of
the user's classes). Several
paths may be included
separated by a semi-colon.

SetJavaOption(1,“C:\Java\classes”)

JARPATH -jarpath 2 Sets the jarpath
(location of the user's Java files
in jar format). Several paths
may be included separated by a
semi-colon.

SetJavaOption(2,“C:\Java\classes
\college.jar;C:\Java\MyApp\MyApp.jar”)

249

Chapter 15- Working with Maps

Working with Maps

OVERVIEW
This chapter introduces how to use Map components to describe the origins of the
data written into a data Destination’s Record fields or Query columns.
Maps provide a convenient way to encapsulate the data-flow relationships and
business rules that drive your Transall Application's outputs.
For each Destination component that you add to your Transall project, you should
create at least one Map component. A Map component describes the origin of each
piece of data that occupies a field in a data record that the Transall Application writes
to a physical data destination. That is, you should create one Map for each Record
subcomponent or Query subcomponent contained in each Destination component
that your Transall Application uses as it runs.
Before writing physical data records to a data destination, the Transall Application
must first place values into those records’ fields. In many cases those values
originate from fields in data records obtained from data sources whose properties are
encapsulated in Source components. In other cases those values originate from fields
in the rows of Tables found in the Transall Application's Transall Database or from
the return values of functions coded in your project’s Transall Script modules.
For more information about Tables and other components in the Transall Database,
see Working with the Transall Database on page 259.
For more information about coding and working with Transall Scripts and Script
Modules, see Working with Transall Scripts and Script Modules on page 319.

MAPS AND RECORDS
A Map always refers to one Record or Query subcomponent in some Destination.
Thus, before you can create a Map your project must contain at least one Destination
component that also contains at least one Record or Query subcomponent.
If a Destination contains more than one Record or Query subcomponent, you must
create a different Map for each Record or Query that the Transall Application uses
to write a physical destination data record. Each Map refers to the fields defined for
a particular Record or to the columns defined for a particular Query.

Destination

Transall DatabaseSource

Record R2

Record R3Map M2

Record R1

Map M1

Map M3

Chapter 15 – Working with Maps

250

If your Transall Application requires, you can create more than one Map for each
Record or Query in a Destination. This allows the Transall Application to populate
an output data record with data values from different sets of origins over the course
of its execution.
The diagram in Figure 163 on page 250 shows three Maps referring to two Records
in a Destination.

Figure 163: Relations of Maps, Records, and the Transall Database

In the diagram Map M1 refers to the Source’s Record named R1 as an origin of data
values to be moved into the Destination’s Record named R2.
The diagram shows that Map M3 refers to a Table in the Transall Database as an
origin of data values to be moved into Record R3 defined for the same Destination.
The diagram also illustrates the fact that more than one Map can refer to the same
Record or Query in the same Destination. Specifically, Map M2 also refers to Record
R3 in the Destination, but does not refer to any Record in any Source. This reflects
another fact that a Map can refer to data values that are the product of calculations
on constants or are the return values from one or more Transall Script routines. (You
code Transall Script routines in your project’s Script Modules, as described in
Working with Transall Scripts and Script Modules on page 319.)
Finally, consider that the diagram presents a simplified scenario. That is, although a
Map can refer to only one Record or Query in only one Destination, it can refer to
more than one Record in one or more Sources as origins of the Destination Record’s
or Query’s data values.

Maps and Records

251

MULTIPLE MAPS FOR THE SAME DESTINATION

Source S1

Map M1 Map M2

F4 F5 F6

Record R2

Source S2

F7 F8 F9

Record R3

Destination D1

F1 F2 F3

Record R1

You might be required to create more than one Map that refers to the same
Destination. For instance, the Destination might have more than one Record
subcomponent, so you must define a distinct Map for each Destination Record.
Or, your Transall Application might use input data records referenced by different
Source Record definitions to populate distinct sets of fields in the same Destination
Record or Query. In this case, you define a Map for each distinct set of target fields
in a given Destination Record or Query. When the Transall Application is ready to
populate the actual output data record, a Logic Tree can perform in sequence each
Map that describes origins of data values for the distinct sets of fields in that
Destination Record.
Figure 164 on page 251, illustrates this scenario.
In the figure, Map M1 refers to fields in Source S1’s Record R2 as the origin of the
data values moved into two fields in Destination D1’s Record R1. Map M2 refers to
one field in Source S2’s Record R3 as the origin of the data value moved into a
distinct field in the same Destination Record.

Figure 164: Using Two Maps to Populate Distinct Sets of Fields in One Destination Record

Chapter 15 – Working with Maps

252

CREATING A MAP
To create a new Map, select the Project>Add Map menu command.
In the Add Map dialog.

Figure 165: Add Map Dialog, for a Destination with More Than One Record Subcomponent

1. In the dialog’s Choose Destination -- Name field:

• Select a Destination by name, or

• Select the Tables item

Tip If you want the Editor to generate automatically maps and names for all records in the
chosen Destination, enable the Map All check box.

2. If you select a Destination, the dialog’s second list shows the Records defined
for that Destination.

As shown in Figure 165 on page 252, if more than one Record or Query name
appears in the list, you must select one as the Map’s “target.” (For your
convenience, the dialog lists all Record or Query subcomponents defined for the
selected Destination.)

3. If you select the Tables item in the pop-down list, the dialog’s second list shows
the Tables currently defined in the project’s Transall Database. Select one as the
Map’s “target”.

4. Type a name for the new Map.

5. Click OK when finished.

Maps and Records

253

INTERACTING WITH THE MAP ASSISTANT
After completing the Add Map dialog, the Map Assistant displays in the Transall
Editor's workspace area, as shown in Figure 166.

Figure 166: Map Assistant

This Assistant displays a Contents view containing a grid of two columns:

• Name column—lists the fields or columns in the selected Source Record, Source
Query, or Table

• Target Expression column—lists the fields in the Map’s target Destination
Record or Query. If necessary, you can define an expression that represents how
the Transall Application derives the field’s or column’s data value.

If you’re describing the map to a COBOL Destination and you need to navigate to

• fields contained in a COBOL subgroup field

• COBOL fields that redefine another field

click , displayed on Contents: map_Name bar. Use the drop-down list to select a
the necessary level of the hierarchy.
You can use the mouse to drag-and-drop the name of the Record field, Query
column, or Table column from the Resource control bar (see Using the Resource
Control Bar on page 255) to a Target Expression cell in the grid.

Chapter 15 – Working with Maps

254

Figure 167 summarizes how.

Figure 167: Populating a Destination Field Expression in a Map

You can edit the text in a Target Expression cell to form an expression. The
expression describes how the Transall Application will manipulate the selected
Source Record field’s value, Query column’s value, or Table column’s value to
become a new value that is stored in that Destination Record field or Query column.
When you finish describing the Map, close the Map Assistant.

Drag-and-drop

Resulting Expression

Maps and Records

255

Using the Resource Control Bar
The Resource Control Bar is automatically invoked and closed, by default, when a
Map Assistant is opened and closed. You can change the Default behavior via
Tools>Settings by and unchecking “Automatically show Resource control bar”.
Alternatively, you can toggle the Resource Control Bar via View>Resource Bar.

Figure 168: Resource Control Bar

The Resource control bar contains the following context menu items:

• Sorted—provides control concerning displayed resources. You can Sort the
display of the tree listing in alphabetical order, or deselect Sort and display the
tree in physical order.

• Flattened—provides control concerning displayed resources. You can Flatten
the hierarchy of the tree listing, or deselect Flattened and display the expanded
tree listing.

Note Each time you start the Transall Editor, it reverts to the default settings of Sorted=On
and Flattened=Off. Toggling either of these menu items causes a repopulation of the
entire control bar.

• Automap—If a Map Assistant has focus and some item in the Resource Control
Bar is selected, then Automap is enabled. If you’re mapping a Source record to
a target record that uses a one-to-one relationship, Automap attempts to assign
map expressions by matching the field names.

• Map Expression— achieves the same results as dragging-and-dropping from the
Resource control bar to the Target Expression field of a record. First, select a
Target Expression field in the Map Assistant; then, right-click a Resource and
select Map Expression. The Resource is displayed in the Target Expression
column.

Chapter 15 – Working with Maps

256

INTERACTING WITH THE EXPRESSION BUILDER DIALOG
By clicking in a Target Expression cell, the Browse button appears as a small box
with three dots in it, as shown in Figure 169.

Figure 169: Map Assistant with Browse Button displayed

Clicking the Browse button will open the Expression Builder dialog, as shown in
Figure 170 on page 257.

Browse Button

Maps and Records

257

Enhanced Expression Builder
The Transall Expression Builder has been redesigned and enhanced to be more
usable. This same Expression Builder is also used in other Oracle products.

Figure 170: Transall Editor’s Expression Builder Dialog

In the large text field at the top, you can compose an expression of any complexity
in the Transall Script language. The expression specifies how to compute the value
that the Transall Application places in the selected Destination Record field or Query
column.
You can quickly and conveniently construct any expression you wish, because the
dialog allows you to select from tree-structured lists of all Transall Script built-in
functions and from lists of all Transall Script routines already defined in this project.

Press OK when you finish composing the expression.
If you opened the Expression Builder while editing a Script in a Script Module
component, the resulting expression or statement is inserted into the Script at the
cursor position. Also, the Script editor corrects the capitalization of any Transall
Script verbs, built-in functions, and other keywords that are inserted. However,
misspellings of Transall Script verb, built-in functions, and other keywords are not
corrected.

Hint After you expand a node in the tree, select a function or routine name, then drag and
drop it in the large text field. Selecting a built-in function name causes a concise
description of its syntax to appear at the bottom of the dialog.

Chapter 15 – Working with Maps

258

If you opened the Expression Builder while editing a component property, such as
the Condition property of a DoWhile instruction in a Logic Tree, capitalization and
misspellings of Transall Script verbs, built-in functions, and other keywords in the
resulting expression are not corrected when the resulting expression or statement is
stored in the property.

PERFORMING A MAP
The Transall Application performs a Map when it encounters a Map instruction in a
Logic Tree. A Logic Tree's Map instruction directs the Transall Application to
perform the data movements and calculations that are contained in the specified Map
component.
The Transall Application can also perform a Map when the Map’s Execute method
is called from a Transall Script routine. A Map’s Execute method is not accessible
for editing among the component’s built-in methods listed in the Component
Inspector.
For more information, see Working with Logic Trees on page 267 andWorking with
Transall Scripts and Script Modules on page 319.

259

Chapter 16- Working with the Transall Database

Working with the Transall Database

OVERVIEW
This chapter explains the purpose of a Transall project’s Transall Database
components—Tables and Sets—and how to create them. Transall has an internal
database that allows you to store data temporarily, for the duration of the project’s
execution. To use the internal database, you define Tables and, optionally, Set
relationships that mirror your storage requirements.
To perform its work, a Transall Application might need to create and work with data
objects that do not change while the application runs or that contain intermediate
results. To meet these kinds of needs, the Transall Application can create and work
with components in its Transall Database. These components are called Tables and
Sets.
For example, assume that part of your Transall Application's work includes using a
table of values to look up information that determines which data to provide to a
Destination. It might be more convenient (and efficient) for the Transall Application
to load that table of values into its memory once and to remember it for the duration
of the application’s lifespan, rather than to reread those values from the same Source
every time a lookup operation must take place as Transall is processing.
Each independent object in the Transall Database that contains data is called a Table.
Each Table contains descriptions of one or more columns.
The Transall Database can also contain definitions of “parent-child” relations
between the respective rows in a pair of Tables. Each of these definitions is called a
Set.

TABLES
As its name implies, a Table contains data that is organized as rows and columns.
Each data value occupies a cell in the Table. A Table contains intermediate data for
the Transall Application to use and each Table is visible to all routines in the Transall
Application.
You define a Table as a set of columns. If needed, you can define a Table with only
one column or even no columns.

Note A Table’s cells contain data that conforms to the Transall Script data types only.

Chapter 16 – Working with the Transall Database

260

OPERATIONS ON TABLES
Your Transall Application populates a Table by adding one or more rows to it. Each
added row can contain one data value for each of the Table’s columns.
After a Table contains at least one row, a Transall Application can read the Table,
beginning with its first row, as follows:

• Via a Walk instruction in a Logic Tree

• Using the verbs GetRow, InsertRow, UpdateRow, FindTblRow, FindSetRow,
GetColSumSet, GetColSumTbl, GetRowCountSet, GetRowCountTbl,
LookUpValSet, LookUpValTbl, and DeleteRow in a Transall Script routine

Resource Considerations for Tables
Your Transall Application should use Tables to store a limited set of information, as
follows:

• Static data, such as a lookup table, that is loaded only once during the start-up of
the Transall Application’s run-time

• One logical data entity, such as the data that represents a policy or part, for any
Source or Destination that is in use

As the Transall Application runs, the memory resource that its Tables require is
limited only by the resources available to the machine running the Transall
application.

ADDING A TABLE
After clicking on the Contents tab in the Transall Database Assistant, add a Table to
the Transall Database by selecting the Database>Add>Table pull-down menu
command. Alternatively, you can right-click on the window’s background and select
the Add>Table popup menu command.
In the Add Table dialog that displays next, enter a name for the new Table, select the
Standard icon, and press OK.
Select the Standard icon to define the Table’s columns yourself, using the same
spreadsheet-style interface you have seen for Records in a Source or Destination.

Adding Columns to a Standard Table

Tip You can use the Copy From menu option to populate table contents from other tables,
records, and queries.

A column describes the attributes of a piece of data, as does a field in a Record
subcomponent of a Source or Destination.
In the Transall Database Assistant, highlight the new Table’s name to display its
contents in the right panel.

Sets

261

To add a column to the Table, click in the first cell in the Name column and enter a
name. Press Tab to move to the next cell.
To complete the column definition, select an Access property value and data type
property value for the column.
Figure 171 shows a Table’s contents as you add a new column definition.

Figure 171: Database Assistant While Adding a Column Definition

After you finish defining the Table’s columns, close the Database Assistant.

SETS
A Set describes a “parent-child” relationship between the rows in a pair of Transall
Database Tables. A parent-child relationship means that each row in the “parent”
Table is related to certain rows in the “child” Table.
For example, given two Tables, assume that the data in Table P describes a set of
insurance policies written by the same agent, and the data in Table E describes a set
of endorsements for those policies. Each row in Table P relates to none, one, or more
than one row in Table E. This means that Table P has a parent-child relationship to
Table E.
A Table can participate in more than one Set. The same Table can be both a parent
and a child to other Tables.
For the details about how a Set relates the rows of two Tables, see How a Set
Establishes Relations between Rows on page 262 later in this chapter.
To begin creating Tables and Sets in your Transall project, double-click on the
Transall Database node in the Transall Editor's Component Explorer.

Chapter 16 – Working with the Transall Database

262

This opens the Transall Database Assistant, shown in Figure 172.

Figure 172: Transall Database Assistant

The Transall Database Assistant presents a tab on the left panel, labeled Contents:

• Clicking on the Contents tab presents the names of existing Tables and Sets.
After clicking here, you can create a Table or Set.

ADDING A SET
After clicking on the Contents tab in the Transall Database Assistant, add a Set to the
Transall Database by selecting the Database>Add>Set pull-down menu command.
Alternatively, you can right-click on the window’s background and select the
Add>Set popup menu command.
In the Add Set dialog, enter a name for the Set and press OK. Set relationships are
displayed in the database tree.
Complete the definition of the Set by editing its properties in the Transall Editor’s
Component Inspector. See Reference for Component Properties on page 265 in this
chapter for a list of the allowable values for each property.

It is invalid to specify the same Transall Database Table in the Child Table and
Parent Table properties of a Set. It is also invalid to name a nonexistent Table in the
Child Table or Parent Table property of a Set. The Transall Editor notifies you of
these discrepancies as it compiles the open project’s components, after you select the
Project>Compile or File>Make .tex pull-down menu command.

How a Set Establishes Relations between Rows
Often the Transall Application can use a row in one Transall Database Table to
contain a copy of a data record just obtained from a Source or being prepared for
output to a Destination. At other times, the Transall Application might be required
to use two Tables, or more, to represent the set of data that relates to one entity.

Tip You can assign the parent and child tables by dragging and dropping tables onto the Set
nodes.

Transall Database Table: Employee Master

Transall Database Table: Employee Activity Detail

Name Identification Number Department

Week Ending Date Hours Worked

Sets

263

For example, the Transall Application might be required to prepare a data record that
incorporates both a “master” set of data about each employee and corresponding sets
of “detail” data.
As represented in Figure 173, there can be more than one set of detail data for a given
employee, such as the number of hours worked each week and the series of projects
to which each employee has been assigned over time.

Figure 173: Master-Detail Data for an Employee

In this case:

• One Transall Database Table holds one row of master data for one employee.

• A second Table holds zero, one, or more than one rows of employee activity
detail data for that employee. Each of these rows is related to the same row of
master data.

Transall Database Table: Employee Master

Transall Database Table: Employee Activity Detail

Smith, John AZ-10046 Marketing

11 Jan 1997 38.7 hours
18 Jan 1997 42.3 hours
25 Jan 1997 40.0 hours
1 Feb 1997 39.6 hours

Because each master (or “parent”) row can have none, one, or more than one
corresponding detail (or “child”) row in one of the other Tables, a “parent-child”
relation exists between the rows. One parent-child relation exists between the master
data row and the rows in the second Table.
Figure 174 on page 263, depicts the relations between the row in the employee
master Table and the rows in the employee activity detail Table.

Figure 174: Related Rows for Parent Table and Child Table

Chapter 16 – Working with the Transall Database

264

Rows Become Related as They Are Inserted
As rows are added to the two Transall Database Tables that participate in a Set, the
Transall Application establishes relations between the rows in the two Tables. The
rows become related as follows:

1. The project contains a Set component that references the two Tables. The first
Table referenced is the parent Table.

2. The Transall Application uses the Transall Script verb InsertRow to insert a new
row in the parent Table. The new row is now the current row in that parent Table.

3. The Transall Application uses InsertRow to insert a row in the child Table.
Transall causes the new row in the child Table to become related to the current
row in the parent Table via the set component. The new row in the child Table
is now that Table’s current row. (This is significant because the child Table can
also participate in another Set as parent Table.)

Transall Database Table: Employee Master Table

Transall Database Table: Employee Activity Detail Table

¹
¼

²
³
½
ª

Order of
Insert Row
Operations

Rows that
Become Related

Smith, John AZ-10046 Marketing
Sather, Jane AZ-11723 Planning

11 Jan 1997 38.7 hours
18 Jan 1997 42.3 hours
11 Jan 1997 40.0 hours
18 Jan 1997 40.0 hours

In this way each new row inserted in the child Table becomes related to the current
row in the parent Table via the set.
Another row can be inserted in the parent Table at any time, and that new row
becomes the current row in that Table.
Figure 175 depicts how new rows in the parent and child Tables become related.

Figure 175: Connected Rows for Parent Table and Child Table

For these two Tables:
(Assume that both Tables in the Set are empty.)

1. The Transall Application adds a row to the parent Table, which becomes the
current row in that Table.

Sets

265

2. The Transall Application adds one or more rows to the child Table. Because the
two Tables are defined as a Set and because the first row in the parent Table is
the current row, the next rows added to the child Table become related to that
row in the parent Table.

3. The Transall Application adds another row to the parent Table, which becomes
the current row in that Table.

4. The Transall Application adds one or more rows to the child Table. They
become related to the second row in the parent Table.

Walking the Related Parent and Child Rows in a Set
After a Set’s two Tables have been populated with rows, the Transall Application
can process them in several ways.
To access the parent Table’s first row and all its related rows in the child Table, the
Transall Application can use the Transall Script verb Walk to obtain access to that
row and all data in all rows in the child Table that are related.
For example, the Transall Application can perform this series of Transall Script
statements:

...
Walk ParentAndChildTableSet
...

REFERENCE FOR COMPONENT PROPERTIES
The following is a list of the unique properties and their allowable values for each
kind of Transall Database component.

Table Properties
Access: (Private, Protected, Public) If Private, the Table can be accessed only from
member methods of this Transall Application; If Protected, the Table can be
accessed from member methods and from inheriting classes of this Transall
Application; If Public, the Table can be accessed from any method.
Alias: Optional, additional name for this Table

Set Properties
Child Table: Name of the child Table in the Set’s parent-child relation.
Connection: (Automatic, Mandatory, Optional) If Automatic, the Set is
automatically connected as rows are inserted into the member Tables; the Set can be
disconnected. If Mandatory, the Set is automatically connected as rows are inserted
into the member tables; the Set cannot be disconnected. If Optional, the Set is not
automatically connected as rows are inserted into the member tables; the Set can be
disconnected.

Chapter 16 – Working with the Transall Database

266

Delete Option: (Cascading, Manual) If Cascading, all child Table rows connected to
a parent Table Row are deleted when the parent Row is deleted. If Manual, all child
Table rows connected to the parent Table Row are disconnected from the set when
the parent table Row is deleted.
Parent Table: Name of the parent Table in the Set’s parent-child relation.
Sort Option: (Next, First, Last) If Next, new rows are inserted after the current row.
If First, new rows are inserted at the beginning of the Set. If Last, new rows are
inserted at the end of the Set.
Access: (Private, Protected, Public) Same as for Table component.

267

Chapter 17- Working with Logic Trees

Working with Logic Trees

OVERVIEW
This chapter describes how Logic Trees encapsulate and express a Transall
Application’s high-level operations.
A Logic Tree is a Transall project component that contains a series of instructions.
A Logic Tree expresses in a visual manner how the Transall Application reads,
manipulates, and writes data via the project’s Sources, Destinations, and Maps. A
Logic Tree can also contain instructions that perform individual Transall Script
verbs; this allows a Logic Tree to call another Logic Trees or any Transall Script
routines.
For example, Figure 176 shows a Logic Tree that contains a Walk instruction
followed by the “nested” instructions Execute, Map, and Output.

Figure 176: Simple Logic Tree

In this case, the Walk instruction directs the Transall Application to open and read
all the records from a Source for reading. For each data record Read from the source
the Transall Application performs, in top-to-bottom order, the instructions shown as
“nodes” nested under the Walk instruction, as follows:

• The Execute instruction uses the Transall Script Call verb to invoke the Transall
Script subroutine named PrepareRecord. Notice that the Logic Tree displays
the value of this instruction’s Description property, which the user has edited to
form a meaningful comment.

• The Map instruction executes the named Map—that is, performs the calculations
and data movements described in the Map component named
WINDOW_Dest_Map to move data from Source records to Destination records.

Chapter 17 – Working with Logic Trees

268

• The Output instruction directs the Transall Application to physically write data
records to the named Destination using the Destination’s Record subcomponent
named WINDOW_Dest.

Note A routine that is invoked via a Logic Tree’s Call instruction must exist either as part of
the same Transall Application or in software found outside the Transall Application but
callable from it via a dynamic link library (DLL) call. In this case, PrepareRecord is a
Transall Script subroutine found in the Script Module named ScriptModule1 in the open
project.

This sample demonstrates that a significant body of data processing can be expressed
in just a few Logic Tree instructions. Thus, without the knowledge and effort
required for conventional programming you can construct one or more Logic Trees
in your Transall project to form the “heart” of your Transall Application’s activities.
For more information about Sources and Destinations, see Working with Sources and
Destinations on page 99.
For more information about Maps, see Working with Maps on page 249.
For more information about the Transall Script programming language and Transall
Script routines, see Working with Transall Scripts and Script Modules on page 319.

HOW A LOGIC TREE WORKS
A Logic Tree’s instructions provide logic building blocks for basic input (the Input
instruction), output (the Output instruction), loop on available input (the Walk
instruction), loop on condition (the DoWhile instruction), data movement into
Destination Record fields (the Map instruction), and branch on condition (the
Condition instruction) capabilities.
The Input and Walk instructions cause the Transall Application to read one data
record at a time from the specified Source into a buffer that is dedicated to that
Source. The Output instruction causes the Transall Application to write one data
record (subject to the specified Record subcomponent’s format) to the specified
Destination, using a buffer that is dedicated to that Record-Destination combination.
The Transall Application initializes and manages all input and output buffers for
you.
The Transall Application begins executing a Logic Tree at its first instruction. The
Transall Application performs each Logic Tree instruction in sequence, until a
Condition, ControlBreak, DoWhile, or Walk instruction is encountered.
After the last instruction in a Condition, ControlBreak, DoWhile, or Walk
instruction’s nested series is performed, the Transall Application performs the next
sibling instruction for that Condition, ControlBreak, DoWhile, or Walk instruction.
After the Logic Tree’s last instruction has been performed, control within the
Transall Application passes to the Transall Script subroutine or function that called
the Logic Tree.

How a Logic Tree Works

269

ADDING A LOGIC TREE

LogicTree Assistant

Logic Control Bar

To create a new Logic Tree, use the Transall Editor’s Project>Add Logic Tree
menu command. In the Add Logic Tree dialog, provide a name for the new Logic
Tree, select the Standard type, and press OK.
As shown in Figure 177, the Transall Editor displays the LogicTree Assistant for
the new Logic Tree and opens the Logic control bar that contains a set of icons.
Each icon represents a kind of instruction building block that you can add to the
Logic Tree by dragging it into the LogicTree Assistant.

Figure 177: LogicTree Assistant and Logic Bar for New Logic Tree

Use the control in the Logic bar's top border to select from the following sets of
LogicTree instructions:

• The Standard set of instructions includes the Comment, Condition,
ControlBreak, DoWhile, Execute, Input, Map, Output, Update, and Walk
instructions. Every new Logic Tree will use at least some of these instructions.

• The Documaker FP set of instructions includes the AddForm,
AddFormsLibrary, AddTag, EndMergeSet, MergeSetBreak, SetEffectiveDate,
SetRulebase, StartMergeSet, and SubmitVRF instructions. Select the
Documaker FP set of instructions if you are coding this Logic Tree to produce
output data records for a Documaker FP File (VRF) Destination.

• The Documaker FP Plus set of instructions includes the FpAddTag,
FpComment, FpDataGroup, FpDataHeader, FpFooter, FpForm, FpHeader,
FpKeepOnSamePage, FpLayout, and FpPageBreak instructions. Select the
Documaker FP Plus set of instructions if you are coding this Logic Tree to
produce output data records for a Documaker FP Plus (VRF) Destination.

Chapter 17 – Working with Logic Trees

270

Each Logic Tree instruction is described in the section entitled Logic Tree
Instructions on page 272.

ADDING AN INSTRUCTION

Drag-and-drop

To add the first new instruction, use the mouse to drag one of the instruction icons
from the Logic bar to the Start tag so that the tag becomes highlighted.
Release the mouse button to insert the instruction, as shown in Figure 178.

Figure 178: Dragging New Instruction into the LogicTree Assistant

When you drag and drop a new instruction, it is inserted in a nested position after the
highlighted instruction upon which you dropped the instruction icon. After dropping
the instruction, if you must adjust its order within its nested group, select Logic
Tree>Move Up (or Move Down), or right-click on the instruction tag and select
Move Up (or Move Down), or select the instruction tag and hold down the ‘CTRL’
key and hold down the left mouse button and drag the instruction to adjust its order.
When a Transall object is dropped on a logic tree instruction, it will either become
associated with that instruction or cause a new instruction to be added as a child of
the dropped-on instruction. For instance, dropping a Source file on a Walk
instruction will set that instruction to Walk that Source file. Dropping the same
Source file on a Condition instruction will create a Walk instruction as a child of the
Condition (the default instruction is listed in bold).

• Source files: Walk, Input

• Destination files:* Output

• Destination Records: Output

How a Logic Tree Works

271

• Maps: Map

• Database Tables: Walk, Input

Note * only destinations with a single record—destination records can also be dragged from
the Resource Control Bar.

Notice that the new instruction appears in red text, to indicate that the instruction is
not fully specified and therefore is invalid. You specify it further by editing the
appropriate instruction properties in the Component Inspector or double-clicking on
the instruction. For example, to complete a new Walk instruction, you must type or
select the name of a Source component from which to read. (All other Walk
instruction properties have default values.)

Depending on the kind of instruction, you can also specify a condition or expression
that it should observe. To do so, open the Transall Editor’s Expression Builder
dialog. Double-click on the instruction to open the Expression Builder dialog. Filling
in the Expression Builder dialog is explained in the section Interacting with the
Expression Builder Dialog on page 256.
An instruction in a Logic Tree can have a next sibling instruction. This is the next
instruction at the same nesting level.

DELETING AN INSTRUCTION
To delete the selected instruction, select the Logic Tree > Delete command, or right-
click on the instruction tag and select the Delete command.

CLONING AN INSTRUCTION
You can insert a copy of the selected instruction in place. Select the Logic Tree >
Clone command, or right-click on the instruction tag and select the Clone command,
or select the instruction tag and hold down the ‘Shift’ key and hold down the left
mouse button and drag to clone a copy of the instruction. The new instruction’s
properties have the same values as the selected instruction.
Notice that the new instruction appears in red text, to indicate that it is incomplete.
You should edit the instruction’s properties in the Component Inspector, completing
its definition, before continuing.

REORDERING INSTRUCTIONS
To change the order of instructions, select an instruction tag and select the Logic
Tree > Move Up (or Move Down) command, or right-click on the instruction tag and
select the Move Up (or Move Down) command or drag the instruction with the
CTRL held down.

Note An invalid Logic Tree instruction prevents the Transall Editor from producing a Transall
Application from the open project.

Chapter 17 – Working with Logic Trees

272

ENABLING AND DISABLING INSTRUCTIONS
Each instruction in the Logic Tree is either enabled or disabled. An enabled
instruction is ready to execute, as long as it is valid. When a disabled instruction
occupies a node, it will not be executed when called.
In the Logic Tree pull-down menu, or in the pop-up menu for a highlighted
instruction, a ‘check mark’ symbol beside the Enabled command, on the menu,
indicates that the selected instruction is enabled. Select the Logic Tree>Enabled
command, or right-click on the instruction tag and select the Enabled command, to
“toggle” whether the selected instruction is enabled or not.

LOGIC TREE INSTRUCTIONS
A Logic Tree can include Standard instructions and Documaker instructions.

STANDARD INSTRUCTIONS
There are eight kinds of Standard instructions, as follows:

• Condition, or perform the nested series of instructions that follow based on the
condition expression evaluating to “True”. (not Zero)

• ControlBreak, or check for a “control break,” which means a change in value
from data record to data record for either a key field (property of the Record or
Query subcomponent) or any of a list of Record fields or Query columns

• DoWhile, or perform the nested series of instructions that follow based on the
“truth” of a condition expression. After performing the last nested instruction, if
the condition expression is still “true” perform the same nested set of
instructions again, and so on.

• Execute, or evaluate the specified Transall Script expression or perform the
specified Transall Script statement

• Input, or read a data record from a Source

• Map, or perform the data movements described in the specified Map component

• Output, or write a data record to a Destination

• Walk, or for each data record obtained from a Source, perform the nested series
of instructions that follow

You can also differentiate the Standard instructions, as follows:

• A Logic Tree’s Input, Output, Walk, and Map instructions refer to data
components (Sources, Destinations, Maps, and Tables) in the open project.

• The ControlBreak, Condition, and DoWhile instructions allow a nested series of
instructions to be performed when a condition is met.

• The Execute instruction allows custom behavior to be expressed anywhere in the
Logic Tree.

Logic Tree Instructions

273

The following sections describe each Standard instruction in more detail.

CONDITION INSTRUCTION
The Condition instruction can be immediately followed by a nested series of
instructions. The nested instructions are performed, in order, if the Condition
instruction’s condition expression produces a value that the Transall Application
interprets as not equivalent to the Transall constant False. Conditions are “True” for
any non zero/non null valve. Otherwise conditions are false and the Transall
Application performs the Condition instruction’s next sibling instruction in the logic
tree.
After adding a Condition instruction, you must specify a Transall Script expression
in its Condition property. You can enter this expression as follows:

• By double-clicking on the instruction node in the LogicTree Assistant to open
the Transall Editor’s Expression Builder.

• In the Component Inspector you can click anywhere in the Condition property
row, then press the browse button to open the Transall Editor’s Expression
Builder.

Filling in the Expression Builder dialog is explained in the section, Interacting with
the Expression Builder Dialog on page 258.
The Condition instruction’s condition expression must be a valid Transall Script
expression that produces a value that is either equivalent to the Transall Script
constant False or not equivalent to False. Conditions that are not equivalent to False
are true. Condition expressions often include a relational operator—greater than (>),
less than (<), equals (=), greater than or equals (>=), and so on—or the onstants True
or False.
Each of the following is a valid condition expression:
SourceRecord.Name = “”
DestinationRecord.TotalDeducts > 0.00
True
False

Hint A Condition instruction’s condition expression can use a variable that was declared in a
Transall Script statement that was invoked in an Execute instruction that has already
been performed in the same Logic Tree. See the section, Using Variables in Logic Tree
Instructions on page 284, for more information.

If a Condition instruction is not followed by a nested series of instructions, the
Transall Application immediately performs the instruction’s next sibling instruction,
if it exists.
Optionally, in the Component Inspector you can type descriptive text about the
Condition instruction in its Description property and this will be shown in the logic
tree for better documentation.

Chapter 17 – Working with Logic Trees

274

CONTROLBREAK INSTRUCTION
The ControlBreak instruction is meaningful only if it is included in the nested series
of instructions under a Walk instruction on a file data source. This is because the
Walk instruction establishes a Source to read and therefore determines which Record
subcomponents are candidates for driving a control break.
The ControlBreak instruction directs the Transall Application to perform the nested
series of instructions that follow:

• if the value in the referenced Source Record’s or Query’s “identifier” field or
column matches the last record read from the source, or

• if the value of any of the fields or columns in the ControlBreak instruction’s
BreakRecordFields property has changed from data record to data record for this
record type.

For more information, see the section Setting Up Control-Break Processing on page
280, later in this chapter.
After adding a ControlBreak instruction, in the Component Inspector you must
update these property values:

• BreakOnFirst - Yes (the default), to consider the referenced Source’s first data
record as a control break or No, not to consider the first data record as a control
break

• BreakRecord - Name of a Record or Query subcomponent in the Source
component named in the preceding Walk instruction

Optionally, in the Component Inspector you can edit the values of these properties:

• Description - Short text that describes the component

• BreakRecordField(s) - If this Logic Tree performs ControlBreak processing that
is based on a change in value of a field (or fields) from data record to data record,
use the Parameters dialog to specify those Source Record/Field pairs in this
property. This ControlBreak instruction will be triggered when the Transall
Application detects a change in value for any of the fields in the list you
construct in the Parameters dialog.

To add or edit a value in the BreakRecordField(s) property, in the Component
Inspector click on its property row and press the browse button.
This opens the Parameters dialog, as shown in Figure 179 on page 275.

Logic Tree Instructions

275

In the Parameters dialog, add a Record field name or Query column name to the
BreakRecordField(s) property by clicking in its check box to the left. When finished,
press OK.

Figure 179: Parameters Dialog

Note If you specify more than one field in the BreakRecordField(s) property, control-break
processing takes place when any of those fields’ or columns’ values changes from data
record to data record.

Optionally, in the Component Inspector you can type descriptive text about the
ControlBreak instruction in its Description property.

DOWHILE INSTRUCTION
The DoWhile instruction can be immediately followed by a nested series of
instructions. The nested instructions are performed, in order, if the Transall
Application determines that the DoWhile instruction’s condition expression
produces a value that the Transall Application interprets as not equivalent to the
Transall constant False. Otherwise, the Transall Application performs the DoWhile
instruction’s next sibling instruction.
After adding a DoWhile instruction, you must specify a Transall Script expression
in the new instruction’s Condition property. You can enter this expression as
follows:

• By double-clicking on the instruction node in the LogicTree Assistant to open
the Transall Editor’s Expression Builder.

• In the Component Inspector you can click anywhere in the Execute property
row, then press the browse button to open the Transall Editor’s Expression
Builder.

Chapter 17 – Working with Logic Trees

276

Filling in the Expression Builder dialog is explained in the section, Interacting with
the Expression Builder Dialog on page 256.
Constructing a valid condition expression in the instruction’s Condition property is
explained in the section, Condition Instruction on page 273.
Optionally, in the Component Inspector you can type descriptive text about the
DoWhile instruction in its Description property.

EXECUTE INSTRUCTION
The Execute instruction directs the Transall Application to evaluate a Transall Script
expression or to perform a Transall Script statement.
Use the Expression Builder dialog to specify the expression or statement. To open
the Expression Builder, double-click on the Execute instruction’s node, or in the
Component Inspector select the Execute property row and press the browse button.
Filling in the Expression Builder dialog is explained in the section, Interacting with
the Expression Builder Dialog on page 256.
You can use an Execute instruction to call another Transall Script subroutines or
functions, or to call another Logic Tree.
To call another Logic Tree, you must specify a Transall Script statement of this form:
call LogicTreeName_Execute

where LogicTreeName represents the name of the Logic Tree to be called. That is,
specify the routine whose name is the name of the Logic Tree with the suffix
_Execute. When you produce the Transall Application, for each Logic Tree in the
project the Transall Editor automatically generates a Transall Script subroutine with
a name of this form.

Optionally, in the Component Inspector you can type in descriptive text about the
Execute instruction in its Description property.

INPUT INSTRUCTION
The Input instruction directs the Transall Application to obtain the next data record
from the specified Source. Specify the Source in the instruction’s Source property.
Optionally, in the Component Inspector you can type in descriptive text about the
Input instruction in its Description property.

MAP INSTRUCTION
The Map instruction directs the Transall Application to perform the calculations and
data movements contained the specified Map component in the open project.
After adding a Map instruction, in the Component Inspector type or select the name
of a Map component in the new instruction’s Map property.

Note All Transall components generate scripts that are callable. To see the available scripts
select the desired component and view the component’s Events in the Component
Inspector view.

Logic Tree Instructions

277

Optionally, in the Component Inspector you can type in descriptive text about the
Map instruction in its Description property.
For more information on scripts, see Built-In Component Methods on page 326.

OUTPUT INSTRUCTION
The Output instruction directs the Transall Application to write data records in the
specified Destination using one of its Record or Query subcomponents.

Because an Output instruction refers to only one Record or Query in a target
Destination, it is valid (and indeed necessary) to include more than one Output
instruction, each referring to a different Destination-Record or Destination-Query
combination, to write data records that are based on different Record or Query
subcomponents for the same target Destination.
After adding an Output instruction, in the Component Inspector type or double click
on the output instruction to select a fully qualified destination Record or Query
subcomponent name in the new instruction’s Output property. That is, select or enter
a name with this form:
DestinationName.RecordName
or
DestinationName.QueryName
where DestinationName is the name of a Destination component in the open project,
RecordName is the name of a Record subcomponent in that Destination, and
QueryName is the name of a Query subcomponent in that Destination.
Optionally, in the Component Inspector you can type in descriptive text about the
Output instruction in its Description property.

WALK INSTRUCTION
The Walk instruction directs the Transall Application to perform the nested series of
instructions that follow, in order, for each data record obtained from the specified
Source.
After adding a Walk instruction, in the Component Inspector type or select the name
of a Source component in the new instruction’s Source property.
The Walk instruction encapsulates the programmatic behavior described in this
pseudocode:

while ([Another Data Record is Available from Source] is True)

repeat this set of instructions {
/* Operations performed for each record */
... }

When there are no more data records available from the specified Source, the
Transall Application performs the Walk instruction’s next sibling instruction.

Note Query subcomponents could update or delete records when processing a write
statement.

Chapter 17 – Working with Logic Trees

278

If a Walk instruction is not followed by a nested series of instructions, the Transall
Application reads, in turn and one at a time, each available data record from the
specified Source until reaching the end of available records for the source, then
immediately steps to the next sibling instruction, if it exists.
Optionally, in the Component Inspector you can type in descriptive text about the
Walk instruction in its Description property.

TESTING IN THE LOGICTREE
Testing in the LogicTree enables testing breakpoints to be set directly in the Transall
LogicTree GUI. Breakpoints can also be set in Transall script code. Transall will step
between breakpoints in the LogicTree GUI and breakpoints in script at the same
time. This enhancement helps keep the Transall developer working in the LogicTree
to test business logic in Transall vs. having to test via the script code Transall
generated for the business logic instructions in the LogicTree GUI. Here is a screen
shot of a LogicTree with break points set in a testing session:

Figure 180: Sample Testing in a LogicTree

Documaker fp Instructions

279

DOCUMAKER FP INSTRUCTIONS
A Logic Tree can contain instructions that perform the basic functions of a Variable
Data Reformatter (VDR) program. A VDR is a custom program interface between
an application and the Documaker fp product. Its purpose is to filter an application’s
system data into a format understood by Documaker fp.
The output of the VDR is a Variable Replacement File (VRF). The VRF is used as
an input file to Documaker fp. Documaker fp then uses the VRF to produce printable
Document Packages containing the application data.
For more information about the purpose of these instructions, see the description of
writing a VDR program in your Documaker fp product documentation.
There are eight kinds of Documaker fp instructions, as follows:

• AddForm, related to VDR’s AddExplicitForm

• AddFormsLibrary, an initialization operation that must be used before any
Merge Sets are created; must be used before the SetRulebase instruction.
Corresponds to calling the AddFormsLibrary routine in Documaker fp’s
MRGUser library.

• AddTag, to write a tag name and its data when the tag is not found in the
Rulebase Tag Table. Corresponds to calling the AddTag routine in Documaker
fp’s MRGUser library.

• EndMergeSet, to delimit one Merge Set from another. Corresponds to calling
the EndMergeSet routine in Documaker fp’s MRGUser library.

• SetEffectiveDate, to set the effective date for forms from the EDL. Corresponds
to calling the SetEffective Date routine in Documaker fp’s MRGUser library.

• SetRulebase, to set the Rulebase name and revision level from which to obtain
merging rules. This is an initialization operation that must be used before any
Merge Sets are created; must be used after the AddFormsLibrary instruction.
Corresponds to calling the SetRulebase routine in Documaker fp’s MRGUser
library.

• StartMergeSet, to initialize a Documaker fp Merge Set. Corresponds to calling
the StartMergeSet routine in Documaker fp’s MRGUser library.

STARTING APPLICATION EXECUTION IN A LOGIC TREE
When a Transall Application starts it begins processing in the Logic Tree marked as
the “Primary Tree”. Only one tree can be marked as Primary, see the Logic Tree
properties shown in the Component Inspector.
A Logic Tree can also be called using a Transall Script statement of this form:
call LogicTreeName_Execute

Chapter 17 – Working with Logic Trees

280

where LogicTreeName represents the name of the Logic Tree. Specify the routine
whose name is the name of the Logic Tree with the suffix _Execute. When you
produce the Transall Application, the Transall Compiler automatically creates,
includes, and compiles a Transall Script subroutine with the appropriate name for
each Logic Tree in the open project.
A Logic Tree can be called by a Transall Script subroutine or function or by another
Logic Tree.

SETTING UP CONTROL-BREAK PROCESSING
Control-break processing means that the Logic Tree performs additional
instructions when it detects a record that matches the record ID of a record type for
a data source or a change from one input data record to another data record in one or
more Source Record fields or Query columns.
You can set up two kinds of control-break processing in a Logic Tree:

• Identifier field processing - Change in processing due to the detection of a
Source Record’s or Query’s “identifier” field in an input data record. Set up this
processing for a Source that refers to a data source from which the Transall
Application can read a stream of data records whose organization varies from
data record to data record. That is, the Source contains more than one Record/
Query subcomponent.

The Record/Query’s identifier field is named in its Identifier property. The value that
identifies a given Record/Query “type” is specified in its Identifier Value property.
The identifier field’s value indicates to the application which Record/Query should
format the current input data record. During input of data records from the data
source, the Transall Application automatically compares the identifier field’s value
in the record to the Identified Value properties setup on the records defined to the
source.

• Break fields processing - (For a Source Record/Query that has an “identifier”
field specified) Change in processing due to a change in the value of any of one
or more “break” fields in consecutive input data records of the same type. This
processing can also pertain to a Source with Records/Queries that define an
identifier field. The break fields are identified in a ControlBreak instruction that
follows a Walk instruction.

During input of data records from the data source, the Transall Application
automatically compares the values of all the break fields in the previous and current
data records. When the previous and current values differ for any of the break fields,
the Logic Tree performs the nested instructions under the ControlBreak instruction.
Each of these kinds of control-break processing requires that the Logic Tree contain
a Walk or Input instruction. The Walk instruction refers to a Source that must contain
at least one Record or Query subcomponent in which the Identifier property specifies
the name of a field/column in that Record/Query.

Example of Identifier Field Control-Break Processing

281

EXAMPLE OF IDENTIFIER FIELD CONTROL-BREAK PROCESSING
The Logic Tree shown in Figure 181 performs control-break processing by
examining an identifier field named REC-TYPE that is defined in each of the Record
subcomponents (named REC-TYPE-A and REC-TYPE-B) for the Source named
UNPREDICTABLE-INPUT:

Figure 181: Logic Tree that Performs Identifier Field Control-Break Processing

The Identifier property in the REC-TYPE-A Record names the REC-TYPE field; the
Identifier property in the REC-TYPE-B Record also names the REC-TYPE field.
The IdentifierValue property for Record REC-TYPE-A is “A”, and that for Record
REC-TYPE-B is “B”.
The Transall Application performs this example Logic Tree as follows:

1. The Walk instruction causes the Transall Application to read input data records
from the Source named UNPREDICTABLE-INPUT.

2. At the next ControlBreak instruction the Transall Application makes note of the
Source Record/Query that the instruction references, then examines the portion
of the input data record that corresponds to that Record’s/Query’s identifier
field.

3. If the Transall Application determines that Record REC-TYPE-A’s
IdentifierValue property’s value (“A”) is found in the portion of the current data
record that corresponds to field named in that Record’s Identifier property (the
REC-TYPE field in the REC-TYPE-A Record), the Transall Application next
performs the nested series of instructions (Execute, then Output) that follows
this ControlBreak instruction. If not, the Transall Application next performs this
ControlBreak’s instructions next sibling instruction.

Chapter 17 – Working with Logic Trees

282

4. The next sibling instruction of the first ControlBreak instruction is another
ControlBreak instruction. Because it is possible for some input data records from
UNPREDICTABLE-INPUT might conform to REC-TYPE-B instead, the
author also included a second ControlBreak instruction. The Transall
Application performs its nested series of instructions if the current data record
contains a “B” in the portion of the data record that corresponds to the REC-
TYPE field. If not, the Transall Application next performs this instruction’s next
sibling instruction.

5. Because there is no next sibling instruction for the second ControlBreak
instruction, the Transall Application loops back to the Walk instruction and
reads another data record from the UNPREDICTABLE-INPUT data source.

EXAMPLE OF BREAK FIELDS CONTROL-BREAK PROCESSING
The Logic Tree shown in Figure 181 on page 281, can be modified to allow the
Transall Application to respond to a variance in certain field values in consecutive
data records that have the same record type.
The modified Logic Tree is shown in Figure 182.
The modifications are:

• In each of the two ControlBreak instructions, the BreakRecordFields property
names at least one (non-identifier) field found in that Record/Query.

• An additional Execute instruction is performed after each of the two
ControlBreak instructions, to respond to the variance in the values of the break
fields in the current data record versus the previous data record.

Figure 182: Logic Tree that Performs Break Fields Control-Break Processing

Example of Break Fields Control-Break Processing

283

As in the previous example, the Identifier property in the REC-TYPE-A Record
names the REC-TYPE field; the Identifier property in the REC-TYPE-B Record also
names the REC-TYPE field.
As in the previous example, the IdentifierValue property for Record REC-TYPE-A
is “A”, and that for Record REC-TYPE-B is “B”.
Specifying one or more (non-identifier) fields in the ControlBreak instruction’s
BreakRecordFields property causes the Transall Application to perform the nested
series of instructions when both of the following are true:

• The current data record’s identifier field value matches that defined for one of
the Records/Queries for the Source named in the previous Walk instruction.

• The values of at least one of the field(s)/column(s) names in the ControlBreak
instruction’s BreakRecordFields property differ in the current data record versus
the previous data record.

This behavior allows the Logic Tree to discriminate among input data records of the
same record “type” but whose field values vary from data record to record.
The Transall Application performs this example Logic Tree as follows:

1. The Walk instruction causes the Transall Application to read input data records
from the Source named UNPREDICTABLE-INPUT.

2. At the next ControlBreak instruction the Transall Application makes note of the
Source Record/Query that the instruction references, then examines the portion
of the input data record that corresponds to that Record’s/Query’s identifier
field.

3. The Transall Application determines whether Record REC-TYPE-A’s
IdentifierValue property value (“A”) is found in the portion of the current data
record that corresponds to field named in that Record’s Identifier property (the
REC-TYPE field in the REC-TYPE-A Record). If so, the Transall Application
next compares the value of each field named in the ControlBreak instruction’s
BreakRecordFields property in the current data record versus the previous Type
A data record. If the values for any of the named break fields differ in the current
data record, the Transall Application performs the nested series of instructions
(Execute, Execute, then Output) that follows this ControlBreak instruction. If
not, the Transall Application next performs this ControlBreak’s instructions next
sibling instruction.

4. The next sibling instruction of the first ControlBreak instruction is another
ControlBreak instruction. The Transall Application processes it just as it did the
first ControlBreak instruction, except that control breaks if the identifier field
value is “B”.

5. Because there is no next sibling instruction for the second ControlBreak
instruction, the Transall Application loops back to the Walk instruction and
reads another data record from the UNPREDICTABLE-INPUT data source.

Chapter 17 – Working with Logic Trees

284

USING VARIABLES IN LOGIC TREE INSTRUCTIONS
Within the same Logic Tree a Condition or DoWhile instruction’s condition
expression can refer to a Transall Script variable that was declared via an Execute
instruction that the Logic Tree has already performed. This allows the Logic Tree to
make processing decisions based on data, such as counters, that is not strictly found
in any project component.
For example, to use a counter that is initialized with a value read from a particular
field in an input data record, you could code the Logic Tree shown in Figure 183.

Figure 183: Logic Tree That Uses Variables

In the example:

• A Logic Tree named ProcessSalesRegions processes input data from two
Sources (RegionCities and RegionSales), uses a Map to move data from the
input data records to an output data record, and writes to the
RegionCitiesAndSales Record of the RegionReportAndSummary Destination.

• The variable iCount, which is declared and initialized in consecutive Execute
instructions at the beginning of the Logic Tree’s execution, counts how many
items (in this case, sales regions) have been processed.

• The variable iNbrOfRegions is declared at the beginning of the Logic Tree’s
execution.

• The Logic Tree’s DoWhile instruction causes processing to loop based on a
comparison of the values of iCount and iNbrOfRegions.

• After a number of input data records equal to iNbrOfRegions have been
processed, the DoWhile instruction no longer loops. Because the DoWhile is the
last instruction in the Logic Tree’s first nesting level, the Logic Tree ends its
execution when the DoWhile’s condition expression evaluates to False.

285

Chapter 18- Debugging and Deploying Transall
Applications

Debugging and Deploying Transall
Applications

OVERVIEW
This chapter describes how to use the Transall Editor to compile the open project
and produce a Transall Executable. Also described is how to use the Transall Editor
to debug a running Transall Executable. The chapter’s final sections describe how
to deploy a production-ready Transall Executable.
When you believe that your Transall project contains a sufficient combination of
Sources, Destinations, Maps, Logic Trees, and (optionally) Tables and user-written
Scripts, you are ready to use the Transall Editor to produce an executable Transall
Application that incorporates all those components’ definitions and instructions.
You can produce a Transall Application that is prepared either for debugging or for
release:

• If prepared for debugging, the Transall Application contains extra information
to support debugging and execution in a controlled manner in the Transall
Integrated Development Environment.

• If prepared for release, the Transall Application contains minimal information to
support debugging and can only be executed in its intended deployment (or
“production”) computing environment.

COMPILING VERSUS BUILDING
The activity of producing a Transall Application for debugging is called compiling.
The activity of producing a Transall Application for release is called building.
Settings in the Project>Settings dialog determine whether the Transall Editor next
produces a debug or release version of the Transall Application. This dialog also
presents other settings that determine whether the Transall Editor produces other
auxiliary files during its compiling or building activity. The section Editing Build
Settings on page 286 describes how to prepare these settings.

• Using the Project>Compile menu command produces a debug version of the
Transall Application. The section Using the Debug Tab on page 293, describes
how to compile a debug version of the Transall Application.

Chapter 18 – Debugging and Deploying Transall Applications

286

• Using the File>Make .tex menu command produces a release version of the
Transall Application. The section, Editing Build Settings on page 286, describes
how to build a release version of the Transall Application.

FILES PRODUCED WHEN COMPILING A TRANSALL APPLICATION
When you compile or build a Transall Application, the Transall Compiler creates
these files:

• project.TEX - P-code file; for execution by the Transall product’s Transall
Host facility (created for a successful compile)

• project.TLB - Type library file; for use only by ActiveX Automation
(optionally created for a successful compile)

where project is the name found in the Name property of the open project’s
Project component.
The Transall Compiler leaves these files in the directories whose paths you specify
in settings, as described in section, Editing Build Settings on page 286.
Always when you compile or build, the Transall Editor creates this file:

• project.TSC - Source file; contains all Transall Script source code that is used
to produce the Transall Application

USING SOURCE CONTROL WITH TRANSALL FILES
Two files, project.TSC and project.TPJ, are appropriate files for version
control by Transall developers.
The project.TSC file contains all the Transall Script source code that was used to
create the project.TEX file.
The project.TPJ file contains all the persistent information about a Transall
project in a binary form.
The .TSC file can be source compared to find changes in Transall applications from
version to version.

EDITING BUILD SETTINGS
Two sets of build settings affect how the Transall Editor next produces a Transall
Application:

• Debug settings

• Release settings

When the open project is saved, the current values of these settings are saved in the
project’s .TPJ file.

Editing Build Settings

287

The Project Settings dialog contains several sections that are displayed under
selectable tabs. Common to all tabs are the selectable buttons labeled Debug and
Release. Use these buttons to determine whether the Transall Editor next produces a
debug or release version of the Transall Application.
Use the project Settings command to specify several default Transall options for use
when compiling and debugging your project. The Project Settings dialog and all of
its properties are used to manage “project-related” information. This information is
saved and reloaded with each project.

To Specify Project Settings

• Select Project>project Settings.

The Project Settings dialog displays.

Figure 184: Project Settings Dialog Box

USING THE PROJECT SETTINGS DIALOG AND TABS
The Project Settings dialog box contains several tabs. You complete a setting by
specifying general operating parameters in panels under these tabs.

To Use a Settings Tab

• Do any of the following:

To specify Go to this topic
The type of build and directories for ancillary files Using the General Tab on page 288

Compiling and debugging options Using the Compile Tab on page 289

Registration settings for the Transall Application Using the Register Tab on page 292

Settings for debugging the Transall Application Using the Debug Tab on page 293

Various formatting symbols common to your geographic
location

Using the Locale Tab on page 299

Chapter 18 – Debugging and Deploying Transall Applications

288

To Save or Close the Project Settings Dialog

• Do one of the following:

Using the General Tab
Use the first tab in the Project Settings dialog box to customize the default settings
of Transall, including:

• Controlling whether the Build command produces an ActiveX executable or
dynamic link library (DLL).

• Specifying the directory paths to contain various files produced during the build
process.

To Display the General Panel

• If the General panel isn’t already showing in the Project Settings dialog box,
click on the General tab.

The General panel displays.

Figure 185: General Settings in the Project Settings Dialog

Because the General panel contains multiple group boxes of specifications, this
guide provides a separate topic for each group.

To Do this
Apply the specifications you’ve provided and return to Transall Click OK.

Return to Transall without applying the specifications you’ve provided Click Cancel.

If you need to specify the Go to
Settings for use during the Build To Specify the Build Settings on page 289

Directory paths for various files produced during
the Build

To Indicate the Supporting Directory Paths on page 289

Editing Build Settings

289

To Specify the Build Settings

• Do one of the following:

To Indicate the Supporting Directory Paths
1. In the Executable Files text box, type the directory path for the Transall

Application executable file, or click to select the folder.

2. In the Intermediate Files text box, type the directory path for other intermediate
files that are by-products of the build process, or click to select the folder.

3. In the Listing Files text box, type the directory path for listing files that
summarize the results of the build process, or click to select the folder.

Using the Compile Tab
Use the second tab in the Project Settings dialog box to modify how the Transall
Editor produces the Transall Application’s executable file and other auxiliary files.

To Display the Compile Panel

• If the Compile panel isn’t already showing in the Project Settings dialog box,
click on the Compile tab.

The Compile panel displays.

Figure 186: Compile Settings in the Project Settings Dialog

Saving or closing of the General tab panel To Save or Close the Project Settings Dialog on page 288

If you need to specify the Go to

If you want to Do this:
Produce an out-of-process ActiveX executable Click ActiveX EXE.

Produce an in-process ActiveX dynamic link library (DLL). (Currently, Transall only
supports building a Transall Application that is an ActiveX executable.)

Click ActiveX DLL

Chapter 18 – Debugging and Deploying Transall Applications

290

Because the Compile panel contains multiple group boxes of specifications, this
guide provides a separate topic for each group.

To Customize the Compiling Options

• In the Customize group box, select as many of the following as necessary:

If you need to Go to
Customize the settings for compiling To Customize the Compiling Options on page 290

Indicate the desired debugging information To Indicate the Level of Debugging Information on page 291

Compile the project for debugging To Compile the Project on page 291

Save or close the Compile tab panel To Save or Close the Project Settings Dialog on page 288

Option Meaning
Generate mapfile whether to provide details about the internal symbols used in the Transall Application
Generate ODL syntax whether to support applications that call the Transall Application by means other than ActiveX calling

interfaces
Generate p-code listing whether to produce a listing that aids in debugging a Transall Application
Generate system tables
in modules

whether to build internal system tables that describe the client tables’ setup in the Transall database
(e.g., SYSTABLES, SYSELEMENTS, and SYSSETS)
SYSTABLES contains one row for each table in the Transall database. Each row

contains one field, NAME, that contains the name of the client table
SYSELEMENTS contains one row for each field in the Transall database:

TBNAME—The name of the client table

NAME—The name of the field

SQLTYPE—The datatype name for the field

PRECISION—The datatype's number of digits to the left of the decimal or
total length for the field

SCALE—The datatype's number of digits to the right of the decimal for the
field

NULLFLG—Flag indicating if the field supports nulls

SYSSETS contains one row for each Set relationship defined in the Transall
database:

NAME—The name of the client Set

PARENT—The name of the owning table

CHILD—The name of the child table

MANOPTFLG—Flag indicating if this Set is Mandatory or Optional

ORDERBYFLG—Flag indicating the sort order

CASCADEFLG—Flag indicating if this set will cascade deletes from the
Parent table to the child table

Loose Datatype
Checking

tells the compiler to generate code to convert automatically the data types of variables on-the-fly so
you won’t receive a “mismatched data type” compile time error

Rebuild all whether to rebuild the Transall Application even if it’s already newer than the Transall source code
from which it was built

Remote DB2 execution whether to build components that enable the Transall Application to access DB2

Editing Build Settings

291

To Indicate the Level of Debugging Information

• In the Debugging Information group box, do one of the following:

exclude debugging information from the Transall Application
only include source code line numbers in the Transall Application
include full debugging information in the Transall Application

To Compile the Project
Compiling the open project allows you to determine whether there are certain kinds
of errors and omissions in the contents of your project components.

• Select Project>Compile from the Transall Editor’s menu bar.

Compiling the open project means:

a. The Transall Editor automatically generates a set of Transall Script source
code routines and definitions and calls the Transall Compiler to compile the
script to p-code. The code in these routines implements the instructions and
data definitions contained in the open project’s components.

b. The Transall Compiler translates all Transall Script routines associated with
the open project, that is, generated and user-written routines into a compact
form, called p-code, which can be executed by the Transall Host run-time
library facility.

As the Transall Editor compiles the open project’s components, it displays
information about its progress in its Output Control Bar. Errors found during
compilation are reported using messages that display in this bar. To open the Output
bar, select the View>Output Bar command.

Figure 187 on page 292, shows the location and contents of the Output bar after
selecting the Project>Compile menu command.

Suppress linking whether to create only a project.TOB file for the open project

Suppress startup
banner

whether the Transall Application should display the Transall Compiler product’s banner when it is
started

Suppress typelib
generation

whether to build a typelib (*.tlb) for the Transall Application

Verbose messages whether to generate extra messages from the build process

Option Meaning

If you want to Do this:
Click None.

Click Line Numbers.

Click Full.

Note Before the program compiling takes place, the Transall Editor checks whether the open
project has ever been saved. If not, the Transall Editor opens a SaveAs dialog in which
you must specify a name for the open project’s .TPJ file. However, using this dialog to
save the project for the first time does not cause the project’s own component properties
to be updated. Therefore, after the compile completes, you should manually update the
project component’s Name property, so that it is the same as the name of the project’s
.TPJ file.

Output bar displaying informational
messages from project compilation.

Chapter 18 – Debugging and Deploying Transall Applications

292

Figure 187: Output Bar in the Transall Editor

Using the Register Tab
Use the third tab in the Project Settings dialog box to specify settings that modify
how the Transall Editor registers the Transall Application’s executable file in the
Windows Registry.

To Display the Register Panel

• If the Register panel isn’t already showing in the Project Settings dialog box,
click on the Register tab.

The Register panel displays.

Figure 188: Register Settings in the Project Settings Dialog

Because the Register panel contains multiple group boxes of specifications, this
guide provides a separate topic for each group.

If you need to Go to
Automatically register the Transall Application as an
ActiveX server

To Register Automatically the Transall Application on page 293

Indicate the desired version of the Transall Host to use To Indicate the Transall Host on page 293

Editing Build Settings

293

To Register Automatically the Transall Application

• Enable the Auto Register check box if you want the Transall Editor to register
the resulting Transall Application’s project.TEX file as an ActiveX server on
your workstation.

Tip When building a debug version of the Transall Application, the Auto Register check box
is unchecked by default. In order to test and debug your Transall Application as an
ActiveX server on your own workstation, you must register it on your workstation and
update your workstation’s Registry as the Transall Application changes.
When building a release version of the Transall Application, the Auto Register check
box is also unchecked by default. This state reflects the expectation that the Transall
Application is not necessarily being deployed on your workstation and therefore
probably must be registered on another system.

To Indicate the Transall Host

• In the Transall Run-Time Component text box, type the directory path of the
Transall Host executable file (tranhost.exe) to use when running the
resulting project.TEX file, or click to select the folder.

-or-

Select a Transall Host version by double-clicking an item in the Versions Found
list box.

When you open the Project Settings dialog, the Transall Editor automatically
populates the Versions Found list after searching the directories listed in the
PATH environment variable for your workstation. By selecting from the Versions
Found selection list, you can build a Transall Application that will be executed,
for instance, by the version of Transall Host that is installed on your workstation
rather than the one installed elsewhere on your network.

Using the Debug Tab
Use the fourth tab in the Project Settings dialog box to debug a debug version of a
Transall Application. This action requires the Transall Editor to be already running
and to have opened the Transall Application’s corresponding project. After the
Transall Editor is running in this manner, the Transall Application can be started for
debugging by

• another ActiveX-enabled client application as an ActiveX server

• the Transall Editor in command-line mode

• the Transall Editor in offline mode

• another EXE that calls the Transall DLL API

Save or close the Register tab panel To Save or Close the Project Settings Dialog on page 288

If you need to Go to

Chapter 18 – Debugging and Deploying Transall Applications

294

To Display the Debug Panel

• If the Debug panel isn’t already showing in the Project Settings dialog box, click
on the Debug tab.

The Debug panel displays.

Figure 189: Debug Settings in the Project Settings Dialog

Because the Debug panel contains multiple group boxes of specifications, this
guide provides a separate topic for each group.

If you need to See this:
Debug in ActiveX mode To Specify ActiveX Debugging on page 295

Debug in Command Line mode To Specify Command Line Debugging on page 295

Debug in Offline mode Specifying Offline Debugging on page 297

Debug in DLL mode To Specify Transall DLL API Debugging on page 299

Save or close the Debug tab panel To Save or Close the Project Settings Dialog on page 288

Editing Build Settings

295

To Specify ActiveX Debugging

• Select ActiveX if the Transall Application will be started for debugging by the
Transall Editor in ActiveX mode.

Figure 190: Select ActiveX

This option allows you to start the Transall Application and leave it to wait for
an ActiveX Client Application to call it (e.g., a Visual Basic Application).

To Specify Command Line Debugging
1. Select Command Line if the Transall Application will be started for

debugging by the Transall Editor in command-line mode.

Figure 191: Select the Command Line Radio Button

2. In the Start Dir text box, type the data path of the working directory where
Transall should try to locate Tranexe. (This option is similar to using the “Start
In” option on a Windows shortcut.)

-or-

Click to select the folder.

Chapter 18 – Debugging and Deploying Transall Applications

296

3. In the Arguments text box, type the arguments (if any) to pass to the Transall
Application.

-or-

Click to select the Transall Script, declared as Public, in the Transall
Application where debuggable execution begins.

It’s important that you type text in the Arguments text box in a particular
manner, as summarized in Figure 192.

Used in the same way as a Browse
button, to find information or files.

Allows you to set a working directory
before Transall starts Tranexe.

These correspond to variables passed
to the public scripts.

Figure 192: Command-line Debug Settings in the Project Settings Dialog

Notice in the figure that a string argument with an embedded blank space must
be enclosed in double-quotes. Otherwise, when running, the Transall
Application automatically performs the appropriate type conversion on literal
values passed to any of its public Scripts via this mechanism.

Editing Build Settings

297

4. Enable the Runtime Profiler checkbox to display a profile report in the Transall
IDE after a debugging session execution completes. The TranExe module also
supports passing the “-prof <filename>” parameter directly on the command
line, enabling profiler support when executing outside the IDE. This parameter
causes a profile report listing to be generated in the passed <filename>. Transall
runs much slower than normal when profiling. Here is an example of the profile
report:

Transall 11.01.00.01 profile report for 'AlliedDa.tex' Wed Oct 12 18:18:46 2005

Top 100 line numbers consuming CPU time, seconds time consumed:

4177, 0.438968
5575, 0.246649
4484, 0.176921
4173, 0.070266
4175, 0.059781
 :
 :
 :

Top 100 most executed line numbers, exe count:

4169, 9381
4171, 9381
4173, 9381
4175, 9381
4177, 9381
 :
 :
 :

The profile report is in two sections. The first section lists up to 100 of the most
time-consuming lines of script from the project, sorted from most time-
consuming to least time-consuming. The second section lists up to 100 of the
most-executed lines of script from the project, sorted from most-executed to
least-executed.

Looking at the first entry of the consuming CPU time report from the example,
there is “4177, 0.438968,” this is saying that script line number 4177 consumed
0.438968 seconds, which was the most time consumed by any single script line
for the run. To see the script at this line in the Transall project, open the project
in the Transall editor that produced the TEX that was profiled, select the
“Debug/External Runtime Error” menu item, and enter 4177 for the line number.
This will bring line 4177 into focus so you can see the line in question.

The Transall project must be complied with at least debug line number support
enabled for profiling support to be available.

Specifying Offline Debugging
Transall supports debugging Transall Applications that can’t execute under the IDE
debugger (e.g., Transall applications executing on non-WIN32 platforms, such as
UNIX). Transall’s Offline debugger is an after-the-fact, log-based, post-mortem
debugger and won’t work in these situations.

Chapter 18 – Debugging and Deploying Transall Applications

298

On WIN32 platforms, Transall supports debugging a Transall application as it
executes—“live”. On non-WIN32 platforms and on WIN32 platforms where the
Transall IDE isn’t installed, Transall supports creating a log file of events for
debugging an application remotely. This debugging log file can then be “played
back” on a workstation with the Transall IDE installed to see what happened when
the application ran.

Figure 193: Offline Debug Settings in the Project Settings Dialog

To Specify Offline Debugging
1. Select Offline if the Transall Application will be started for debugging by the

Transall Editor in Offline mode.

2. In the File Out text box, type the name of the file to receive offline debugging
instructions from the Transall Editor.

3. In the File In text box, type the name of the file created by Transall when the
application was run in offline debugging mode.

4. In the Watch Variables text box, include all the breakpoints you want set and any
variables you want to be able to “watch” in the Transall debugger’s Variable
Watch window.

Offline debugging mode is triggered by passing two special parameters to the
Transall Host at run-time:

• /din <ddorfilename from File Out>

• /dout <ddorfilename from File In>

These parameters pass the name of the “in” and “out” files to the Transall Host. Note
that the “in” file from the Editor goes with the “/dout” parameter to Transall at run-
time. The “out” file from the Editor goes with the “/din” parameter to Transall
because the “out” file from the Editor is the input file to the Host. You must make
available this “out” file to the Transall Host running in offline debugging mode. If
you have to copy the file in order for it to be available to the Transall Host, be sure
to make a binary copy with no character conversion.

Editing Build Settings

299

If you’re using offline debugging via MVS JCL, you need to include two DD
statements in your JCL for the debug files. Also, you need to pass the “/din <dd>”
and “/dout <dd >” parameters in the JCL’s PARM= statement to enable offline
debug mode and tp provide the names of the DD statements to Transall.
When you’re ready to begin an offline debugging session, see To Perform Offline
Debugging on page 299.

To Perform Offline Debugging
1. Complete all the text boxes for Offline debugging, and then click OK.

2. Select Debug>Start to start the debug session.

3. Click Write Debug Instructions in the Offline Batch Debugging dialog.

4. Copy (via a binary copy) the “out” file to a place where the offline Transall Host
has access. The “out” file is created by the Editor and specified in the “File Out”
text box on the Debug panel of the Project Settings dialog.

5. Run the Transall application with the /din and /dout parameters and MVS DD
statements.

6. Copy (via a binary copy) the “/dout” file to a place accessible to the Transall
Editor. The “/dout” file is created by the Transall application execution. The file
name must match the file specified in the “File In” text box on the Debug panel
of the Project Settings dialog.

7. Select Debug>Start to display the Offline Batch Debugging menu.

8. Click Playback Offline Session to step through the breakpoints and see the
debug information captured during the offline debug execution.

To Specify Transall DLL API Debugging
1. Select DLL if the Transall Application will be started for debugging by the

Transall DLL API.

2. In the Executable text box, type the name of and parameters to the EXE that will
call the Transall DLL API.

-or-

Click to select the file.

The Transall Editor will start the named executable file. This file enables
Transall to debug calls to the DLL API. Only an executable started by Transall
in this manner can debug DLL API calls to Transall. See Deploying Transall
Applications on page 306 for details on the Transall DLL API.

Using the Locale Tab
Use the fifth tab in the Project Settings dialog box to specify the major language of
your geographical region and whether to use the default Windows formatting
symbols for currency, dates, and times.

Chapter 18 – Debugging and Deploying Transall Applications

300

If you click Dynamic, Transall uses the default symbol value for the Locale that is
selected through the Windows Control Panel, regardless of what is selected in the
Editor.
If you want to override the default Value for a given Symbol, you can leave the
Dynamic check box blank and enter the desired value.

To Display the Locale Panel

• If the Locale panel isn’t already showing in the Project Settings dialog box, click
on the Locale tab.

The Locale panel displays.

Figure 194: The Locale Panel

Because the Locale panel contains multiple group boxes of specifications, this
guide provides a separate topic for each group.

To Specify the Regional Language

• In the Language drop-down list box, select the language common to your
geographic region.

Transall saves the language option for this workstation. If you access this project
from another workstation, be sure to verify the language.

If you need to Go to this topic
Specify the language common to your geographic region To Specify the Regional Language on page 300

Indicate dynamic loading of common formatting symbols for date, time,
and currency

To Specify Dynamic Loading of Formatting Symbols on
page 301

Specify custom values for the formatting symbols To Specify Custom Formatting Symbol Values on page
301

Save or close the Locale tab panel To Save or Close the Project Settings Dialog on page
288

Running a Transall Application in Debug Mode

301

To Specify Dynamic Loading of Formatting Symbols
Depending on the language you choose on your workstation, Windows contains
formatting symbols common to that region for currency, date, and time fields. If you
click the Dynamic option, you can’t override the symbol value: Transall loads the
symbol from the Windows Registry when you compile and run your project.

• For each formatting symbol, enable the Dynamic check box if you want to load
the value stored in the Windows Registry.

To Specify Custom Formatting Symbol Values

• If you want to use a symbol other than the default, leave the Dynamic check
box blank and enter the desired Value.

RUNNING A TRANSALL APPLICATION IN DEBUG MODE
An important part of ensuring that your Transall Application is behaving as intended
is to watch it in action, but in a controlled fashion. This is called debugging.
You can prepare a Transall Application for debugging at the time you produce it.
After doing so, you can also use the Transall Editor as a debugging environment.
After a debug version Transall Application exists, you can direct the Transall Editor
to intercept control of its execution the next time it is started.
After the Transall Application’s execution is under the control of the Transall Editor,
you can direct the Transall Application to precede one source-code statement at a
time, or to proceed from one breakpoint to another. You can also view and update
the contents of data variables as the Transall application runs.
To use the Transall Editor in this manner, you first must take these steps:

• Produce a debug version of the open project’s Transall Application.

Set a breakpoint in the source code of at least one of the
Transall Application’s Transall Script routines.

-or-

Set a breakpoint in at least one of the Transall Application’s LogicTree routines.

Note By setting one or more breakpoints in a LogicTree routine, you can watch the flow of
your logic without having to view the underlying source code.

COMPILE SETTINGS FOR PRODUCING A DEBUG
VERSION
To produce a debugging version of the open project’s Transall Application, you must
set the proper Transall Editor compile settings.

1. Select Project>project Settings.

2. Select the Compile tab.

Chapter 18 – Debugging and Deploying Transall Applications

302

3. In the Debugging information group box, click either Line Numbers or Full.
4. Click the Debug option button.

5. Click OK to save the settings.

6. Select Project>Compile or press F7, to compile the open project and produce a
debugging version of the Transall Application.

BREAKPOINTS IN TRANSALL
When the debug version Transall Application executes under the control of the
Transall Editor, you can cause it to pause at a particular source code or LogicTree
statement. This is called setting a breakpoint.
To set a breakpoint within the Transall Application, open a Script Module or
LogicTree component, set the cursor in the pertinent statement, and select the Debug
> Toggle Breakpoint command or press F9.
You can set a breakpoint on any statement in

• a user-written Transall Script subroutine or function.

• any built-in Transall Script method including component methods.

• a LogicTree routine.

Breakpoint Indicator

For more information about component methods, see the section Built-In Component
Methods on page 328.
Figure 195, shows a Script Module’s Contents view for the Transall Script routine
named CreateCPD after the user has set a breakpoint.

Figure 195: Breakpoint in Script Module Contents View

Running a Transall Application in Debug Mode

303

Figure 196 shows a LogicTree’s Contents view for the LogicTree routine named
Start after the user has set a breakpoint.

Figure 196: Breakpoint in LogicTree Contents View

When the Transall Application’s execution has paused, you can examine:

• Values of variables defined within the paused Transall Script subroutine or
function (that is, whose lexical scope is local)

• Values of variables defined in the Declarations sections of the project’s Script
Modules (that is, whose lexical scope is global)

• The names of Transall Script routines that have been called before reaching the
paused subroutine or function

For example, if you know that one Transall Script routine in your Transall
Application calls another, you can set a breakpoint on a significant statement in the
calling routine and on one in the called routine. When the Transall Editor gains
control of the running Transall Application, you can allow the execution to pause at
the calling routine’s breakpoint then continue the execution until it reaches the called
routine’s breakpoint. In this manner, you can verify that the Transall Application is
behaving as expected within a certain context of execution.

OPERATING TRANSALL UNDER DEBUGGING CONTROL
To operate a debug version of a Transall Application under the control of the
Transall Editor, follow these steps:

1. Select Debug>Go, or press F5, to direct the Transall Editor to start or to
intercept control of the Transall Application when it is next started. (Notice that
the Transall Editor now presents its debugging interface; “[Run]” status appears
in the Transall Editor window’s title bar.

Note If the application is not an ActiveX application, then the F5 key starts the run time
execution. If the application is ActiveX, the F5 key just loads the ActiveX module and
tells it to wait for a call to one of its public methods (subroutines).

Breakpoint Indicator

Chapter 18 – Debugging and Deploying Transall Applications

304

If this is an ActiveX debug session, use an external, ActiveX-enabled application
to call a public routine that has been compiled into the Transall Application.

The Transall Editor gains control of the Transall Application’s execution and
causes it to pause at the first statement encountered where a breakpoint is set.

2. As the Transall Application executes, use Debug menu commands or Debug
toolbar buttons to step from one source-code statement to the next, or from
breakpoint to breakpoint. Control bars in the Transall Editor’s debug interface
present local and automatic variables, specified “watch” variables, and the
names of the routines presently on the Transall Application’s routine call stack.

3. To end debugging before the Transall Application completes its execution,
select Debug>Stop Debugging, press CTRL+F5, or press the Stop Debugging
button on the Debug toolbar.

You can individually configure the Transall Editor’s three debugging control bars.
With the mouse cursor over one of these bars, right-click for a pop-up menu that
allows you to hide the bar, allow it to float within the Transall Editor, or allow it to
dock on one side of the Transall Editor.
After the Transall Editor gains control of the Transall Application’s execution, when
paused at any statement you can:

• Select Debug>Step Into, or press F8, to proceed one source-code statement at a
time. If the next statement calls another routine within the Transall Application,
that routine’s source code is opened and execution continues to the first
statement in that routine.

• Select Debug>Step Over, or press Ctrl+F8, to proceed one source-code
statement at a time. If the next statement calls another routine within the Transall
Application, execution pauses at the next statement in the calling routine after
the calling statement.

When you stop debugging the Transall Application, the Transall Editor terminates
the Transall Application and reverts to its default, component-oriented interface.
When the Transall Application terminates in this manner, it returns an error
condition message to its caller in the COM-based execution environment.

VIEWING DEBUG VARIABLES IN THE VARIABLES AND
WATCH BARS
The Debug Variables bar offers two tabs to select which set of variable names and
values to display:

• Auto - Variables in the current and previous line of execution

• Local - Variables in this routine only

While the Transall Application’s execution is stopped, change the value of a variable
shown in the Debug Variables bar by clicking on the variable’s value cell and enter
a new value.

Hint Transall “remembers” the look of the editor while debugging and changes to that look
each debugging session.

Running a Transall Application in Debug Mode

305

As shown in Figure 197, stopping execution in a Transall Script function routine
causes the Debug Variables bar to display a variable with the function’s name; this
variable represents the function’s return value.

Figure 197: Local Variable Values Visible in Debug Variables Bar

In the Debug Watch bar, click in a Name cell and enter the name of a variable. This
variable’s value will be displayed in the value cell when it is within the current
execution scope. That is, variables defined in any Script Module’s Declarations
section are always in scope, but a routine’s local variables (those defined by a
Transall Script Dim statement) are only in scope, and therefore only have a value,
while that routine is being executed.

Execution paused
in function

Local variable valueFunction return
“variable”

Chapter 18 – Debugging and Deploying Transall Applications

306

CHANGING DISPLAY SCOPE FOR VARIABLES
Click on an item in the Debug Call Stack bar to display the values of variables that
exist and are in scope for that routine’s execution context.

BUILDING A TRANSALL APPLICATION FOR RELEASE
When you are ready to produce a Transall Application for use in a production system
environment, you can edit the Project Settings dialog that controls the setting for a
release version of the Transall Application. To do so:

1. Select Project>project Settings to open the Project Settings dialog.

Update any relevant settings under the dialog’s General, Compile, and Register
tabs.

2. Select the Compile tab.

3. In the Debugging Information group box, click None.

4. Click the Release option button at the bottom of the dialog.

5. Click OK to close the dialog.

6. Select File>Make project.tex to compile the open project. This action produces
a release version of the Transall Application.

DEPLOYING TRANSALL APPLICATIONS
Transall applications can be deployed and executed several ways:

• Windows command line

• Batch (*.BAT) files

The Windows command line and batch file support enables you to start a
Transall application and pass it parameters via Windows batch files or the
Windows command line. The Transall application will run a single script to
conclusion and terminate.

• ActiveX automation

• DLL Application Programming Interface (API)

ActiveX automation and DLL API support enables you not only to run a Transall
application script, but also to call several scripts in a single “session” while the
Transall application maintains its “state” (connections to data sources such as
files and SQL databases) across the calls. This is a more sophisticated way to
control a Transall application from another application.

• Under Oracle's Internet Document Server (IDS)

Running Transall under Oracle's IDS facility:

Deploying Transall Applications

307

• enables an IDS request type to be defined that loads a Transall application
(whose name is provided in an IDS attachment variable), and

• executes a script in the application, with the script’s name also being
provided in an IDS attachment variable.

• as a Windows Service

WINDOWS COMMAND LINE
Transall applications can be run directly from the Windows command line. To start
a Transall application from the Windows command line, select the Windows Start
button and then click on Run…. In the “Open” text box, enter the command to start
Transall using the same syntax that is used to run Transall applications in batch files.

BATCH (*.BAT) FILES
Transall applications can be controlled via Windows batch files. These are files
whose extension ends in .BAT and they contain a script of Windows command
interpreter commands (such as copy, mkdir, and ren). Please see your Windows
documentation for the Windows Command Interpreter for more information on the
commands that can be included in Windows Command BAT files. Transall
applications can be executed as part of Windows .BAT files with the following
syntax:
TRANEXE app.tex StartScriptName [parameter] [parameter] [parameter] […]
where:

After Transall has completed executing the StartScriptName script, it will set the
.BAT variable ERRORLEVEL to the value returned by the StartScriptName script
if the script was a Function returning a numeric value such as an Integer, Long or
Double. If the StartScriptName script returns a String then ERRORLEVEL will be
set to the numeric value of the string as if the string was processed by a Val function.
If the StartScriptName script was a Sub or a function returning a DateTime then
ERRORLEVEL will be set to zero for a successful run and to 1001 if a critical error
occurred that was not handled by an On Error Resume processing in the Transall
application.

Parameter Meaning
app.tex Name of a Transall executable. This is a file produced by the Transall compiler with

an extension of .TEX.
StartScriptName Name of the script subroutine that Transall should execute.
parameter Value to be passed to the script. Parameters passed on the command line are

matched to the StartScriptName script’s parameters by order. The first parameter
goes to the first StartScriptName script parameter and the second parameter goes
to the second StartScriptName script parameter and so on.

Chapter 18 – Debugging and Deploying Transall Applications

308

ACTIVEX AUTOMATION
Transall applications can be run as ActiveX Automation Servers from ActiveX
enabled Automation clients such as Microsoft Visual Basic and Microsoft Office
applications. Transall supports both early (through a Type Library *.TLB file) and
late (through iDispatch) ActiveX Automation binding. Please see the detailed
documentation available from your ActiveX Automation client software (VB or
Office) for details on controlling ActiveX Automation severs.
Before Transall applications can be controlled via ActiveX Automation they must be
“registered” on the workstation as available ActiveX Automation servers. The
following command line syntax can be used to register Transall applications:
TRANHOST app.tex /Register
Where app.tex is the name of a Transall executable. This is a file produced by the
Transall compiler with an extension of .TEX. If your ActiveX Automation client
software is Microsoft Visual Basic the following are the general steps required to
control Transall applications as ActiveX Automation servers:
Early Binding (advantage slightly faster call to Transall, disadvantage must set up a
reference to your Transall project’s TypeLib TLB file in VB).

1. Set a VB reference to the Transall project’s TypeLib TLB file.

2. In your VB code, define a variable of type AppName.TransObject where
AppName is the internal name of your Transall application.

3. In your VB code make the following call to load your Transall application into
memory:

Set Step2varName = New AppName.TransObject

4. Run public Sub scripts in your Transall application:

Call Step2varName.PublicScriptName([parm][, parameter][…])

Run public Function scripts in your Transall application:

RetVar = Step2varName.PublicScriptName([parm][, parameter][…])

Special early binding notes:

• Microsoft Visual Basic holds the Transall TypeLib TLB open while you are in
VB. If you recompile your Transall application while VB is open, and you have
your Transall application setup to regenerate the TypeLib on compile, you will
get a compile error that Transall could not write the TypeLib. You will need to
close the VB project to get VB to release the Transall TypeLib.

Deploying Transall Applications

309

• The Transall application loads into memory on the third step call to
“Step2varName = New AppName.TransObject”. The Transall application will
stay in memory until the Step2varName is assigned to Nothing or the variable
passes out of scope (see VB documentation on VB variable scoping). Since
Transall stays in memory and holds its memory “state” across calls to its Public
scripts, it is a good idea to set up your Transall application’s Sources and
Destinations with the “Manual” OpenMode property. Then setup a Public script
that Opens the Sources and Destinations and another that Closes them. Have
your VB code call the Open script after the “Step2varName = New
AppName.TransObject” call. This will enable Transall to hold its connections to
data sources and destinations while you make several calls to Transall Public
scripts. This can be much more efficient than having each Public script
automatically open and close connections to the data sources and destinations
each time they are called.

Late Binding (advantage do not need to set up a reference to your Transall project’s
TypeLib TLB file in VB).

1. In your VB code define a variable of type Object.

2. In your VB code make the following call to load your Transall application into
memory:

Set Step1varName = CreateObject(“AppName.TransObject”)

3. Run public Sub scripts in your Transall application:

Call Step1varName.PublicScriptName([parm][, parameter][…])

Run public Function scripts in your Transall application:

RetVar = Step1varName.PublicScriptName([parm][, parameter][…])

Special late binding notes:

• The Transall application loads into memory on the second step call to “Let
Step1varName = CreateObject(“AppName.TransObject”)”. The Transall
application will stay in memory until the Step1varName is assigned to Nothing
or the variable passes out of scope (see VB documentation on VB variable
scoping). Since Transall stays in memory and holds its memory “state” across
calls to its Public scripts, it is a good idea to set up your Transall application’s
Sources and Destinations with the “Manual” OpenMode property. Then setup a
Public script that Opens the Sources and Destinations and another that Closes
them. Have your VB code call the Open script after the “Let Step1varName =
CreateObject(“AppName.TransObject”)” call. This will enable Transall to
hold its connections to data sources and destinations while you make several
calls to Transall Public scripts. This can be much more efficient than having each
Public script automatically open and close connections to the data sources and
destinations each time they are called.

Chapter 18 – Debugging and Deploying Transall Applications

310

DLL APPLICATION PROGRAMMING INTERFACE (API)
Transall applications can be run as Dynamically Loaded Libraries (DLL) from
applications that can load DLLs such as Microsoft Visual Basic and Microsoft
Visual C/C++. Transall installs with an “API” subdirectory. In this directory are
three files:
trandynm.bas - Microsoft Visual Basic Declare syntax for Transall DLL Application
Programming Interface (API).
trandynm.h - C declaration syntax for Transall DLL API.
trandynm.lib - Static library for WIN32 compatible linkers that defines the Transall
DLL API.
There is also a fourth file that is required for the DLL API. This file is found in the
Transall install directory
trandynm.w32 - WIN32 DLL that implements the Transall DLL API.
To call Transall applications as a DLL from VB perform the following steps:

1. Include the trandynm.bas file in your VB application’s file list. This will define
the Transall DLL API functions to your VB application.

2. In your VB code setup a Global variable of type Long. This will receive a handle
to your Transall application when it is loaded as a DLL. For this discussion I am
calling this variable “hTex”.

3. In your VB code make the following call to load your Transall application into
memory:

iOk = LoadTransallTex(sTexFileName, hTex)

iOk is the name of an Integer variable that receives the results of the call.
sTexFileName is the name of the Transall executable *.TEX to load.
hTex will receive a handle value to the loaded TEX. Note, more than one TEX
can be loaded at once. Create a separate Global variable of type Long to receive
the handle of each loaded TEX.

This and all functions for the Transall DLL API return Zero to indicate no error
and non-Zero to indicate error.

4. In your VB code call one or more of the following to load each parameter to the
Transall Public script that you want to call via the DLL API:

iOk = SendParmString(hTex, StringParmValue, Len(StringParmValue))
iOk = SendParmLong(hTex, LongParmValue)
iOk = SendParmDouble(hTex, DoubleParmValue)
iOk = SendParmDateTime(hTex, Year, Month, Day, Hour, Minute, Second,
Millisecond)

Repeat these calls to load each parameter to the Transall Public script that you
want to call via the DLL API.

Deploying Transall Applications

311

5. In your VB code make the following call to run a script in your Transall
application:

iOk = ExeMethod(hTex, ScriptName)

6. In your VB code call one or more of the following to retrieve the value of ByRef
parameters passed to the Transall Public script called in Step 5:

StringParmRetLen = Len(StringParmRet)
iOk = GetParmString(hTex, ParmIndex, StringParmRet, StringParmRetLen)
iOk = GetParmLong(hTex, ParmIndex, LongParmRet)
iOk = GetParmDouble(hTex, ParmIndex, DoubleParmRet)
iOk = GetParmDateTime(hTex, ParmIndex, Year, Month, Day, Hour, Minute,
Second, Millisecond)

Repeat these calls to retrieve the value of each ByRef parameter to the Transall
Public script that called in Step 5.

Note You get retrieve the return value of a script by passing on ParmIndex value of zero.

7. Repeat steps 4 – 6 to call Public functions via the DLL API.

8. In your VB code make the following call to unload your Transall application
from memory:

iOk = UnloadTransallTex(hTex)

Special DLL notes:

• Calling Transall applications via the DLL API provides some of the flexibility
of ActiveX Automation without requiring that the Transall application be
registered.

• The Transall application loads into memory on the third step call to
LoadTransallTex. The Transall application will stay in memory until the eighth
step call to UnloadTransallTex. Since Transall stays in memory and holds its
memory “state” across calls to its Public scripts, it is a good idea to set up your
Transall application’s Sources and Destinations with the “Manual” OpenMode
property. Then setup a Public script that Opens the Sources and Destinations and
another that Closes them. Have your VB code call the Open script after the
LoadTransallTex call. This will enable Transall to hold its connections to data
sources and destinations while you make several calls to Transall Public scripts.
This can be much more efficient than having each Public script automatically
open and close connections to the data sources and destinations each time they
are called.

Chapter 18 – Debugging and Deploying Transall Applications

312

IDS INTERFACE
Transall applications can run as “rules” under Oracle’s Internet Document Server
(IDS). To setup a Transall application to run as an IDS rule, update the IDS
DOCSERV.INI with the following entries:

These entries identify Tranrule.dll (for Windows, and tranrule.so for UNIX) as a
loadable module that implements a “Run” interface conforming to the IDS calling
convention (see the IDS documentation for more information on the details of rule
module interfaces).

The Run interface in the Tranrule module retrieves the value of the “TEXFILE” and
“TEXSCRIPT” attachment variables from IDS when Run is invoked. It expects the
TEXFILE variable to contain a fully-qualified path and file name to a Transall
executable module that will be loaded by Tranrule. The Run interface also expects
the TEXSCRIPT variable to contain the name of a Public script in the executable
module loaded by TRANEXE. This Public script must be set up as a Subroutine
taking no parameters. The Run interface in Tranrule will then execute the Public
script named in TEXSCRIPT.
Tranrule is invoked by an Init, RunForward, RunReverse, and Term call from IDS.
Since Tranrule responds to all IDS calls, we have to use a script, such as IDS-Run-
Example(), to determine which IDS call we act on.

[REQTYPE:SomeName]
 function = tranrule->Run

Note For DFLXRULE, TRANRULE, and CPYRULE to run correctly with Oracle's Internet
Document Server 2.0 (and later) on the Linux platform, you must update the export
definition for LD_PRELOAD by adding this file to the preload list:

/usr/lib/libstdc++-libc6.2-2.so.3

Include this change in the script you use to start IDS.

Note TrnSys$IdsRunEvent, TrnSys$IdsInit, TrnSys$IdsRunForward,
TrnSys$IdsRunReverse, and TrnSys$IdsTerm are new reserved variables.

Deploying Transall Applications

313

Option 1:

Option 2:

Public Function IDS-Run-Example() As Long

 If TrnSys$IdsRunEvent = TrnSys$IdsInit Then

 'Init

 ElseIf TrnSys$IdsRunEvent = TrnSys$IdsRunForward Then

 'Run Forward
 '* Call some Logictree to do work here *

 ElseIf TrnSys$IdsRunEvent = TrnSys$IdsRunReverse Then

 'Run Reverse

 ElseIf TrnSys$IdsRunEvent = TrnSys$IdsTerm Then

 'Term

 End If

End Sub

Public Sub IDS-Run-Example()

 Static lCallCount As Long

 lCallCount = lCallCount + 1

 If lCallCount = 1 Then

 'Init

 Else If lCallCount = 2 Then

 'Run Forward
 '* Call some Logictree to do work here *

 Else If lCallCount = 3 Then

 'Run Reverse

 Else If lCallCount = 4 Then

 lCallCount = 0
 'Term

 End If

End Sub

Chapter 18 – Debugging and Deploying Transall Applications

314

When running under Tranrule and IDS, Transall script can call several special
functions to retrieve information from the IDS environment:

• DSIAddAttachVar(<long queue flag>, <String Variable Name>, <String
Return>)

Use this function to push values into any IDS queue. The <long queue
flag> parameter can be set to either TrnSys$DSI_INPUTQUEUE or
TrnSys$DSI_OUTPUTQUEUE to select the input or output queues.

• DSILocateAttachVar(<long queue flag>, <String Variable Name>,
<String Return>)

Use this function to retrieve values from any IDS queue. The <long queue
flag> parameter can be set to either TrnSys$DSI_INPUTQUEUE or
TrnSys$DSI_OUTPUTQUEUE to select the input or output queues.

• GetExtEnvString(<String Variable Name>)

Use this function to retrieve a value from the environment in which Transall is
running. When running under IDS, this will be the IDS input queue. This
function works when Transall is running under IDS, Docuflex Entry, Docuflex
batch processing, or any environment in which Transall can run it. Using this
function to retrieve external variable values keeps your Transall script from
needing to know that it is running under IDS, Docuflex, or some other
environment.

• IDS_Get(<String Variable Name>)

Use this function to retrieve values from the IDS input queue. This function
returns the value retrieved as a string.

• IDS_Put(<String Variable Name>, <String Value>)

Use this function to push values into the IDS output queue.

Transall applications loaded to Tranrule under an IDS instance retain their “state”
across calls to Tranrule.

The best way to accomplish this type of database connection pooling is to perform
database connections, and any other onetime processing that is statefull, as part of
the Transall application’s OnCreate event script. Once connected, the database
connection(s) can then be accessed via Transall LogicTrees and other Transall
facilities normally. These connections made in the OnCreate script will stay
connected across subsequent IDS Tranrule invocations.

Example A Transall application running under Tranrule can connect to a database as part of the
initial IDS invocation—and stay connected—so processing will be as fast as possible for
subsequent invocations of the Transall application under IDS.

Deploying Transall Applications

315

WINDOWS SERVICE
Transall applications can be run as Windows Services. To run a Transall application
as a Service, it must be "installed" as a Service. Transall Service installation is
performed from the Windows command line via the Transall Command Line Host
Tranexe application. Tranexe supports both installing and removing Transall
applications as Windows services via the “-instserv” and “-remserv”
command line options. The full syntax for installing a Transall application as a
service is as follows:

tranexe -instserv <Tex file name>[<Service Start
Public Script>]

where:

For example, the Transall installation includes a sample Transall service application
called “DirWatch.” This application is a sample shell application for watching a
directory on a Windows server. When files or sub directories are added to the
watched directory, this application will locate each new file and directory and act
upon it. For the sample DirWatch, the application just moves the files from the
watched directory to another directory. In a real application, using the techniques
shown in the DirWatch sample, Transall could be used to start other applications
(like a Oracle publishing application) or perform other processing that is triggered
by the appearance of files in the watched directory.
The sample DirWatch application can be installed as a service by opening a
Windows command prompt, changing to the directory where the DirWatch example
resides, and running the following command line:
tranexe -instserv DirWatch

Parameter Meaning
<Tex file name> Name of Transall executable
<Service Start Public Script> (Optional) Name of a public script where service processing starts

Chapter 18 – Debugging and Deploying Transall Applications

316

The results will look something like this in the command prompt window

Figure 198: Results of the dirwatch Command

The DirWatch Transall application is installed as a Windows Service with these
properties:

Figure 199: DirWatch Application Windows Service

Deploying Transall Applications

317

To remove the DirWatch Transall application as a Windows Service, open Windows
command prompt, change to the directory where the DirWatch example resides, and
run the following command line:

tranexe -remserv DirWatch

Writing to the System Events Logs from a Transall
Application Running as a Service
Once a Transall application is installed and running as a Windows Service, output
from the application that would have gone to the Windows Command console now
goes to the Windows event log. Any calls to WriteConStdErr(<Message String>)
go to the Windows Application event log as Error events, and calls to
WriteConStdOut(<Message String>) go to Windows Application event logs as
either Information events or Warning events (depending on the content of the
Message String).
If the Message String starts with “W:”, like

“W: Trans #2653 checking #0566209133 failed check
digit testing.”

then this message is logged as a Warning.
If the Message String does not start with a “W:”, like

“Processed 1,121,385 transactions.”

then the message is logged as Information.

Chapter 18 – Debugging and Deploying Transall Applications

318

319

Chapter 19- Working with Transall Scripts and Script
Modules

Working with Transall Scripts and Script
Modules

OVERVIEW
This chapter describes how to construct a Transall Script and how to collect Scripts
in a Script Module component.
For some applications, the programmability provided by your Transall project’s
Maps and Logic Trees is sufficient. For other applications, where additional business
rules require a larger body of custom processing, you can construct reusable
sequences of instructions called Scripts.
Each Script contains statements in the Transall Script programming language. Each
Script’s first statement “declares” the Script as either a subroutine, which returns no
value to its caller, or a function, which returns a value to its caller. Each Script can
use its own set of variables and can contain any number of Transall Script
statements.
The Transit Script Language Syntax, in Appendix A: Statement Syntax on page 393,
describes all statements and expressions available in the Transall Script language.
A Script can call, and be called by, other Scripts that are contained in your Transall
project. (A common use of a Script is to provide custom capabilities for the Transall
built-in component methods listed in section, Appendix A: Built-In Component
Methods on page 326.)
A Script can also be called by an Execute instruction in a Logic Tree component in
your Transall project.
Scripts are not themselves components, but must be contained in components called
Script Modules. A Script Module can contain one or more Scripts. Each Script
Module serves as a container for a related set of Scripts.
In addition to one or more Scripts, a Script Module contains a Declarations section
where you use Transall Script statements to declare

• external routines that are called by any of this Script Module’s contained Scripts.

• Transall working Storage Tables that are used by Scripts contained in this Script
Module.

Chapter 19 – Working with Transall Scripts and Script Modules

320

CREATING A SCRIPT MODULE
To add a new Script Module to your project, select the Project>Add Script Module
command from the Transall Editor’s menu bar. In the Add Script Module dialog
enter a name for the new Script Module and click OK.
The Transall Editor opens the Script Module Assistant for the new Script Module in
the workspace area.
As shown in Figure 200, by default a new Script Module’s Script Module Assistant
presents the Module’s Declarations section.

Figure 200: Empty Declarations Section of a New Script Module

Creating a Script Module

321

CODING THE DECLARATIONS SECTION
Figure 201, shows a Declarations section that contains valid Transall Script
language declarations for two external routines that are called by the Scripts
contained in this Script Module.

Figure 201: Declarations Section That Declares External Routines and Noncomponent Table

This Declarations section also illustrates how to declare and populate rows for a
Table that the Scripts in this Script Module can use. This kind of Table is called a
noncomponent Table, because its definition is not stored in the Transall project as
a distinct component. The final two InsertRow statements populate two rows of that
Table. (This is the only valid use of the InsertRow verb outside the context of a Script
function or subroutine.)

The Transit Script Language Syntax, in Appendix A: Statement Syntax on page 393,
describes the syntax for the Declare Function, Define Table, and InsertRow
statements in the Transall Script language.

Hint The underline (_) character indicates the continuation of a Transall Script statement on
the next line.

Chapter 19 – Working with Transall Scripts and Script Modules

322

Adding a Script
To add a Script to the open Script Module, select the Script Module>Script Add
menu command from the Transall Editor menu bar, or right-click on the background
of the Script Module Assistant and select the Script Add pop-up menu command.
This opens the Add Script dialog, shown in Figure 202.

Figure 202: Add Script dialog

To Add a Script
1. In the Name text box, type a name for the Script.

2. In the Type group box, select whether it is a subroutine or function Script.

3. If the Script is a function, select the return value’s Transall Script data type.

4. Accept the default Access property value of Private. (Select Public only if you
are adding a Script that will be called from a routine outside your Transall
Application, such as via ActiveX Automation.)

5. Click OK when finished.

After completing the dialog, the Transall Editor displays the Contents view of
the Script Module Assistant.

As shown in Figure 203 on page 323, the Contents view now displays the
Transall Script statements that define a subroutine: Sub and End Sub.

Creating a Script Module

323

Figure 203: Default Appearance of Script Module Assistant for New Script

6. Add Transall Script statements to the body of the new routine between the Sub
and End Sub statements. The Transit Script Language Syntax, in Appendix A:
Statement Syntax on page 393, describes all statements and expressions
available in the Transall Script language.

Tip The context menu contains a command called Auto Formatting. Enabled by default, you
can toggle automatic formatting of script code. In general, you should avoid using
keywords as variable names. If you must, however, you can disable automatic
formatting to keep the Editor from changing the case of words to make them match a
Transall keyword (e.g., “name” would be changed to “Name” with Auto Formatting
enabled).

7. If you want to construct a statement quickly and insert it at the cursor location in
the Script Module Assistant, you can use the Transall Editor’s Expression
Builder dialog. The section, Appendix A: Interacting with the Expression
Builder Dialog on page 258 describes how to construct and format expressions.
To open the Expression Builder dialog when editing a Script, right-click in the
background of the Script Module Assistant and select the Expression Builder
pop-up menu command.

8. If you need to create variables or constants, you can use the Transall Editor’s
Variable and Constant Builder. To open the Variable and Constant Builder when
editing a Script, right-click in the background of the Script Module Assistant and
select the Variable Builder pop-up menu command.

As shown in Figure 204 on page 324, the dialog assists in the creation of local
and global variables, global constants, and local static variables.

Chapter 19 – Working with Transall Scripts and Script Modules

324

Figure 204: Variable & Constant Dialog Box

The Variable and Constant Builder is an alternative to hand-coding
variables and constants. It provides some protections, in that it disallows
constants in local scripts, places globals in a user declaration area, and
generates the appropriate syntax, but essentially, it’s just enforcing the
compiler constraints.

For more information about global constants, see Expression Syntax on
page 443.

To Delete a Script

• Select the Script Module>Script Delete menu command from the
Transall Editor menu bar

-or-

Right-click in the background of the Script Module Assistant and select the
Script Delete pop-up menu command.

Editing a Script’s Source Code
The Script Module Assistant for a Transall Script subroutine or function
provides a simple text editor. A cursor indicates where text can be inserted.
The editor provides these keystrokes:

• Move cursor by character: Up, Down, Left, Right

• Move cursor by word: Ctrl-Left, Ctrl-Right

• Move cursor to Top, Bottom of routine: Home, End

To search for a series of characters in the routine, select the Edit>Find menu
command.
Alternatively, to search for a series of characters, type a search term (or select
an existing search term) in the Find control bar and press RETURN.

Creating a Script Module

325

As shown in Figure 205, each new search string that you enter in the Find control
bar is added to a selectable list.

Figure 205: Selectable List of Search Strings in Toolbar’s Find Control Bar

To search and replace characters in the routine, select the Edit>Replace menu
command.
The editor also uses color to distinguish Transall Script keywords, user-specified
identifiers, constants, and comments, as follows:

• Transall Script keywords appear in blue.

• Transall Script extended keywords, such as built-in functions, appear in purple.

• User-specified identifiers, constants, and component names appear in black.

• Comments appears in green.

Viewing the List of Scripts in a Script Module
After you add Scripts to a Script Module, click the control on the Contents view
title bar to open a drop-down list of the names of the Scripts contained in the Script
Module.

Find control bar

Chapter 19 – Working with Transall Scripts and Script Modules

326

Figure 206 shows the appearance of this list.

Figure 206: Contents List for a Script Module

Typing the first character of a script name moves you to that entry, a second similar
keystroke highlights the next item starting with that character. Use the Enter key to
open the highlighted script.

BUILT-IN COMPONENT METHODS
Transall provides many built-in component methods that you can call from your own
scripts to provide special-purpose behavior in your Transall Application. Some of
these methods are user defined and some are generated automatically. Each method
is a Transall Script function or subroutine.
For example, for any file-based Source component there are OnOpenBefore and
OnOpenAfter methods that you can customize. One is automatically called before
the Transall Application attempts to open the Source, and the other is automatically
called after that attempt.
After selecting a component in the Transall Editor’s Component Explorer, select the
Events tab in the Component Inspector to display the available built-in methods for
that component. Double-click on a method name in the list to open a Script Module
Assistant where you can edit ‘On’ events, denoted with a lighting bolt. You can not
edit generated events denoted with a building block.
Table 2: Transall Built-in Component Methods lists all the built-in methods whose
source code the Transit Editor presents for you to customize.

Table 2: Transall Built-in Component Methods

Component /
Method Signature

Description

Access / Function or
Sub

Return
Type

Table

OnDelete() Called when a record is deleted Private
Function

Integer

Built-In Component Methods

327

OnInsert() Called when a record is inserted Private
Function

Integer

OnUpdate() Called when a record is deleted Private
Function

Integer

Map

Map
(ByVal /FileNumber As Long)

Map Private
Sub

Void

OnMap
(ByVal /FileNumber As Long)

Called before Map execution Private
Sub

Void

Logic Tree

Execute() Execute Private
Function

Integer

OnExecute() Called before Execute Private
Sub

Void

Source

OnReadAfter
(ByVal /FileNumber As Long)

Called after Read Private
Sub

Void

OnReadBefore
(ByVal /FileNumber As Long)

Called before Read Private
Sub

Void

Read
(ByVal /FileNumber As Long)

Read a record Private
Function

Integer

File-based Source

GetNextRecord() Input Record from
Source

Private
Function

Integer

OnGetNextRecordBefore() Called before a record
is read

Private
Sub

Void

Destination

OnWriteBefore
(ByVal /FileNumber As Long)

Called before Write Private
Sub

Void

OnWriteAfter
(ByVal /FileNumber As Long)

Called after Write Private
Sub

Void

Write
(ByVal /FileNumber As Long)

Write a Record Private
Function

Integer

Table 2: Transall Built-in Component Methods (Continued)

Component /
Method Signature

Description

Access / Function or
Sub

Return
Type

Chapter 19 – Working with Transall Scripts and Script Modules

328

File-Based Source or Destination

Close() Close file Private
Function

Integer

OnCloseAfter
(ByVal /FileName As String)

Called after Close Private
Sub

Void

OnCloseBefore
(ByVal /FileNumber As Long)

Called before Close Private
Sub

Void

OnOpenAfter
(ByVal /Handle As Long, ByVal /
FileName As String)

Called after Open Private
Sub

Void

OnOpenBefore
(ByRef /FileName As String)

Called before Open Private
Sub

Void

Open() Open record Private
Function

Integer

SetParameters
(ByRef /ResourceName As String)

Changes default values for file
name and attributes

Public
Sub

Void

ODBC-based Source or Destination

Connect() Establish an ODBC connection Private
Function

Integer

Disconnect() End an ODBC
connection

Private
Function

Integer

OnConnectAfter() Called before Connect Private
Sub

Void

OnConnectBefore() Called before Connect Private
Sub

Void

OnDisconnectAfter() Called after Disconnect Private
Sub

Void

OnDisconnectBefore() Called before
Disconnect

Private
Sub

Void

SetParameters
(ByRef /ResourceName As String,
ByRef sUID As String, ByRef /PWD As
String)

Changes default values for file
name and attributes

Public
Sub

Void

Table 2: Transall Built-in Component Methods (Continued)

Component /
Method Signature

Description

Access / Function or
Sub

Return
Type

Built-In Component Methods

329

ODBC-based Source or Destination with Query

Prepare() Readies a SQL
statement for execution

Private
Function

Integer

Execute() Executes a prepared SQL
statement

Private
Function

Integer

Table 2: Transall Built-in Component Methods (Continued)

Component /
Method Signature

Description

Access / Function or
Sub

Return
Type

Chapter 19 – Working with Transall Scripts and Script Modules

330

331

Chapter 20- Project Sharing

Project Sharing

OVERVIEW
Transall project sharing enables top-level components of Transall projects such as
sources, destinations, maps, logic trees, scripts, Transall database tables and sets to
be shared between projects. The sharing is supported one of two ways, copy or link.
With a copy share, the desired components are copied to the target project. These
components are then part of that project exactly as if the Transall user had entered
them. With a link share, the desired components are included in the target project but
they are not available for editing in the target project. When sharing items from
another project via a link means that, you are relying on the source project for the
definitions and maintenance of these items. A link is maintained in the target project
to the shared components from the source. These linked components can still be
edited in the source project and the updates can be absorbed into the target project
via a link synchronize feature.
Transall tries to minimize sharing problems by disallowing duplicate names and
forcing destinations to be included with shared maps. It is incumbent on the user to
assure the shared items have the resources they need. For example, Transall logic
trees may reference many items. If shared as a link all items referenced by the logic
tree must also be shared as linked items.

PROJECT SHARING DETAILS
Share menu item: Under the File menu is the Share menu item, which displays a
dialog for selecting the source project and the Transall items to share.

Chapter 20 – Project Sharing

332

Choose the source project by typing in the project name or by clicking the ellipsis,
button and using the file open dialog. If you manually enter the project name, you
must leave the edit field for the project to open. A tree of top-level items from the
source project is displayed below the project name.

Figure 207: Linking to a Project

Select items by clicking the check boxes to the left of each item, or right click for a
popup menu that allows all children of the highlighted node to be selected. The
Linked checkbox determines whether the item(s) are shared as a link or copy. A
project can share any number of links and/or copied items from one or more source
projects. The Use Documanage checkbox means that you want to select the item(s)
from a Documanage Cabinet/Folder (i.e., check Use Documanage and then click the
browse button).
Source project items for sharing that are grayed out indicate that the item name, or a
key sub item name, already exists in the destination project, and sharing is
disallowed. To include grayed out items into the target project you must rename the
target project items causing the name collision.
Synchronize menu item: Under the Project menu is a sub menu Synchronize, which
has three menu items, Datasource, Links, and DMG Report.

Overview

333

Figure 208: Synchronize Menu

Data sources that are linked into a project cannot be synchronized in the target
project. The source project must be opened to perform the datasource synchronize.
Links synchronizes all links and displays the results in the Output Bar under the
Synchronize tab.

Figure 209: Synchronize Links Display Window

DMG Report indicates which Documanage documents will supply link
requirements.

Figure 210: Documanage Links

Links menu item: Under the View menu is menu item Links.

Chapter 20 – Project Sharing

334

It displays a list box of all the links for the current project.

Figure 211: Links Displays Box

Any links from Documanage will appear as
“DMG:Cabinet\Folder\id(MajVer.MinVer).ext. Clicking Edit Link displays the
Select Documanage Document dialog and clicking Synchronize retrieves the
listed version from Documanage. For all other links, double-clicking a row or
clicking the Synchronize button will synchronize just that one link.

335

Chapter 21- Managing Transall Applications

Managing Transall Applications

TRANSALL HOW TO’S:

CREATING A TRANSALL PROJECT
1. To setup a new Transall project, start the Transall editor (TRANEDIT.EXE).

The editor will optionally open the last project you had been working on or it will
open a default new project.

2. Select File>New to have Transall start a new project called “Project1”.

Hint When you create a new project, it will be named “Project1”.

Figure 212: File Menu

Chapter 21 – Managing Transall Applications

336

3. Open the Component Explorer (if it is not already open) by selecting the
View>Component Explorer menu item.

Figure 213: View Menu and Component Explorer

In the Component Explorer control bar, you’ll see a Tree View of your Transall
project. The top node in the tree is the project node and it displays the project’s
internal name and external file name. After selecting File>New to create a new
project in the editor, the project’s internal name will be Project1 and the external
name will be (Project1).

Transall How To’s:

337

4. Select the File>Save menu item to save and name your project.

Figure 214: File>Save Menu and Save As Dialog Window

5. From the dialog window, type in a file name for the project. Since this is the first
time the project is being saved, the file name typed in here will become both the
internal and external name for the Transall project.

Let’s assume you typed, “Demo” for a Save As file name. Transall will update
the Component Explorer control bar to reflect that the Transall project now has
an internal name of “Demo” and an external name (Demo.tpj). The difference
between the internal and external name for a Transall project is that the external
name of a project is the name of the project file (TPJ file extension) in which the
Transall project will be saved. The internal name is the name of the executable
to which the project will compile when compiled (built) by the Transall editor.
The Transall editor is also referred to as the Transall Integrated Development
Environment (IDE).

6. Click Save to save the project.

Chapter 21 – Managing Transall Applications

338

OPEN AN EXISTING TRANSALL PROJECT
1. To open an existing Transall project, start the Transall editor

(TRANEDIT.EXE).

The editor will optionally open the last project you had been working on or it will
open a default new project.

Figure 215: Opening Transall

2. If the editor opens the last project you were working on but that is not the project
you need to edit, select the File>Open menu item.

Transall How To’s:

339

Figure 216: File>Open Menu and Open File Dialog Window

3. From the dialog window, select the Transall project you want to edit and click
Open.

Chapter 21 – Managing Transall Applications

340

ADJUSTING CONTROL BARS AND WINDOWS
1. To change the way the Transall Editor shows you a project’s contents, select the

View menu item.

2. From the View menu item, you can turn the Component Explorer and
Component Inspector on or off. These control bars display parts of a Transall
project. You might want to turn them on or off to have more screen space in
which to work.

Figure 217: View Menu

3. From the View>Toolbar menu item, you can turn on and off toolbars and use
the Customize option to adjust the buttons available on the editor’s toolbars.

Figure 218: View>Toolbar Menu

Transall How To’s:

341

4. From the Window menu item, you can switch between Assistant windows that
are open in the Transall editor. You can also arrange the windows or close all the
windows from the Window menu item.

Figure 219: Window Menu

5. To open Editor Assistant windows, double-click on the project component that
you want to edit in the Component Explorer view.

 This will open a window specialized for editing the Transall project component
you selected.

Figure 220: Assistant Window

Chapter 21 – Managing Transall Applications

342

SETTING UP AN SQL DATA SOURCE OR DESTINATION
(ODBC CONNECTION)
To setup a SQL data source, which is an ODBC connection, start the Transall editor
(TRANEDIT.EXE) and select a Transall project for editing or start a new Transall
project

Figure 221: Project>Add Source Menu

Transall How To’s:

343

Click on the Project>Add Source menu item.

Figure 222: Add Source Dialog Window

This will display the Add Source dialog window.

Note In the dialog window, update the Source Name to something meaningful for the data
source. You cannot use special characters or spaces in the name of a data source, but
you can use underscores “_” and dashes “-”. It is often a good idea to suffix your data
source names with a meaningful value, like “-Src” or “-ScHo”.

Chapter 21 – Managing Transall Applications

344

Figure 223: Source Properties List

Transall How To’s:

345

After typing in a source name, select the type of source from the Source Properties
list. For SQL sources select “SQL Data Source”.

Figure 224: Select Data Source Dialog Window

Now select an ODBC data connection for this source. In the File/Data Source Name
window, either type in the ODBC connection name or click on the button with three
ellipses to display the Select Data Source dialog window, from this dialog window
select or create an ODBC connection.

Figure 225: Component Explorer and Component Inspector Windows

Chapter 21 – Managing Transall Applications

346

After selecting an ODBC connection, click the “OK” button to complete the SQL
source creation. You will see your new data source listed in the Component Explorer
under the Sources component branch. Also, the Component Inspector will show the
details of your new SQL data source. The Component Inspector will show extra
details or properties that were not available for setting in the Add Source dialog
window.
These extra properties include the following:
ConnectionMode:

Automatic - (default) Transall will automatically generate logic
to connect to this datasource for you.

Manual - Transall will generate logic to connect to this
datasource but will not automatically call the logic.
You must manually place a call to the generated
logic in your Transall Scripts or LogicTrees to have
Transall run the instructions that connect to this
data source. You might want to select Manual if
you need to have extra control over when a data
source is connected to by Transall. This may be
the case if you have a need to connect and
disconnect several times to a data source during a
Transall run. By default, the Automatic connection
mode connects to a data source and holds the
connection for the life of the Transall run
disconnecting when Transall is ready to terminate.

ErrorHandler:
Automatic - (default) Transall will automatically handle and

recover from errors. Transall will “throw” only
critical errors that must be “caught” via an On Error
Resume Next type statement.

Manual - Transall will ignore all errors and return errors to
your Scripts or LogicTrees for handling.

ODBC Prompt:
True - (default) Transall will prompt for missing

information such as user ID and password when
connecting to an ODBC database connection.

False - Transall will not prompt for missing information
such as user ID and password when connecting to
an ODBC database connection but will instead
throw an unable to connect error message.
Transall will also retain more information when
ODBC Prompt is set to False then when this is set
to True. When this property is set to, True Transall
only retains the name of the ODBC connection.
When this property is set to False Transall retains
the name of the ODBC connection and any
information provided to connect to the ODBC
connection to access database schema
information. This extra-retained information
generally includes user ID and password.

Transall How To’s:

347

Adding an SQL Query (Statement) to an SQL Data Source or
Destination
To add an SQL query, which is an SQL statement; to a Transall SQL data Source or
Destination, you must first locate or setup a new SQL data Source or Destination for
the query. Once an SQL data Source or Destination has been selected, open the data
Source or Destination’s Assistant window by double clicking on the desired data
Source or Destination in the Component Explorer.

Figure 226: Resource>Add>Query Menu

With the data Source or Destination’s Assistant window open, select the
Resource>Add>Query menu item.

Note If the Resource>Add menu doesn’t display the options as active, place the mouse
pointer in the DataSource Assistant and click the left mouse button once. This action
makes the Assistant the target focus. Now, selecting the Resource>Add menu displays
active options. You can also add a query by placing the mouse pointer in the Query List
window, then click and release the right mouse button. This will open a menu for adding
a query.

Chapter 21 – Managing Transall Applications

348

Figure 227: Add Query Dialog Window

This will display the Add Query dialog window. In the dialog window, enter a
meaningful name for your query. Press the “OK” button to complete the query
addition.

Note The name cannot contain special characters or spaces but can contain underscores “_”
and dashes “-”.

Right-click pop-up menu

Transall How To’s:

349

Figure 228: Add Tables Menu

Chapter 21 – Managing Transall Applications

350

After adding a query, you will see the query listed in the data source or destination’s
DataSource Assistant in the Query List view. At this point, you have created a
placeholder for a database query. To define the query’s contents, click on the new
query’s name in the Query List view. Then click on the Resource>Add>Table
menu item or right mouse click in the Contents view and select Add Tables.

Figure 229: Add Tables Dialog Window

This will display the Add Table dialog window. This dialog window lists all the
tables and views available in the database that the SQL data source or destination is
connected to via ODBC. Select a table or view or a set of tables and views to be
included in the database query. Press the “OK” button to complete the table add.

Figure 230: DataSource Assistant with Query added

Transall How To’s:

351

After the tables and views have been selected, they will appear in the Data source
Assistant’s editor window as little “Table” windows. One little Table window will
appear for each table and view selected. These little windows show the fields
available from the table or view. Click on the fields in the table windows to place a
check mark next to the fields that you want returned for a data source or sent for a
data destination. At this point, you have created a SQL statement. This will be a
Select statement for data sources and either an Insert, Update or a Delete statement
for data destinations. You can further qualify the SQL statement with a Where
clause, an OrderBy clause or a Distinct directive from the Resource menu.

Figure 231: Views of SqlView and SqlBind View Tabs

If you want to view the SQL syntax that Transall is building for you, it is available
in the Sql View tab of the DataSource Assistant. The SqlBind View of the
DataSource Assistant shows a list of the fields being accessed by the SQL statement
and how they are being “bound” to a Transall memory table that is acting as a data
value buffer for the SQL statement.
After SQL Query is built, the Component Inspector will show extra details or
properties that were not available for setting in the Add Query dialog window.

Chapter 21 – Managing Transall Applications

352

These extra properties include the following:
Command:
PrepareAndExecute - (default) Transall will generate logic to run the

SQL statement via separate Prepare and Execute
ODBC calls.

ExecuteDirect - Transall will generate logic to run the SQL
statement via a single ExecuteDirect ODBC call.

Connect:
PrivateCursor - (default) Transall will generate logic to create a

single database connection with a private
statement handle for executing this SQL
statement. This connection often provides the
most capabilities while conserving resources with
most ODBC drivers.

Private - Transall will generate logic to create a private
database connection and statement handle for
executing this SQL statement. This option should
be used when more than one SQL statement
needs to be active at the same moment in time
and the ODBC driver being used does not support
multiple active statements on a single database
connection.

Shared - Transall will generate logic to create a shared
database connection and a shared statement
handle for executing this SQL statement. This
option can be used when it is not necessary to
have more than one SQL statement active at the
same moment in time and system resources need
to be conserved.

Format:
Standard - (default) Transall will prebind this SQL statement

to Transall memory tables at compile time for
speed.

Dynamic - Transall will not prebind this SQL statement to
Transall memory tables. This would be used when
the SQL statement string needs to be built
dynamically at execution time. Very few ODBC
drivers require this option.

TableQualifier:
none - (default) Transall will not generate a SQL

statement with table qualified syntax.
Owner - Transall will generate a SQL statement with table

qualified syntax.
Type:
Select - (sources only) Transall will generate a SELECT

SQL statement.
Insert - (destinations only) Transall will generate an

INSERT SQL statement.

Transall How To’s:

353

Update - (destinations only) Transall will generate an
UPDATE SQL statement.

Delete - (destinations only) Transall will generate a
DELETE SQL statement.

Have One SQL Statement Reference the Results of Another
When setting up SQL queries in Transall it can be desirable to have one SQL
statement reference a result field of another statement or another data source. This is
not the same as a table join in the query itself. Instead, this is a situation when you
want to use data from another query, maybe even another data source altogether as
part of a SQL statement’s where clause. For example, this technique would be used
when using the results of reading a file to load the where clause of a SQL query.
Transall supports “binding” data values from other data sources to a SQL query
through the Transall expression builder. When using the expression builder to
construct a where clause, the builder will use two types of syntax depending on the
type of data selected to be part of the where expression. If the data selected is from
one of the tables included in the SQL Select then Transall will use regular SQL
syntax to build the where expression. This is because a reference to the tables
included in the SQL Select is really a table join. If the data selected is from outside
the query, like from another query or from another data source then Transall will use
data binding syntax to construct the where expression. The difference in the syntax
is a colon “:” placed just in front of the referenced data item. The colon indicates that
this data item is being “bound” to the SQL statement from outside the SQL
statement. Bound variable references are resolved to data values when the SQL
statement is executed at run-time.

Chapter 21 – Managing Transall Applications

354

SETTING UP A DELIMITED FILE DATA SOURCE
To setup a delimited file data source, which is a file whose records and fields are
delimited by some value (usually carriage-return/line-feeds for records and commas
for fields), start the Transall editor (TRANEDIT.EXE) and select a Transall project
for editing or start a new Transall project.

Figure 232: Add Source Menu

Click on the Project>Add Source menu item. This will display the Add Source
dialog window.

Right-click pop-up menu

Note By right mouse clicking and releasing in the Component Explorer will display a menu
that will allow adding a source.

Transall How To’s:

355

Figure 233: Add Source Dialog Window

In the dialog window, update the Source Name to something meaningful for the data
source.

Note You cannot use special characters or spaces in the name of a data source but you can
use underscores “_” and dashes “-”. It is often a good idea to suffix your data source
names with a meaningful value like “-Src” or “-ScHo”.

Chapter 21 – Managing Transall Applications

356

After typing in a source name, select the type of source from the Source Properties
list. For delimited files, select “Delimited File”. Last, select a file name for this
source. Either type in the file name or click on the button with three ellipses to
display the Select File dialog window, from this dialog window either select or type
in a new file name. After selecting a file name click the “OK” button in the Add
Source dialog window to complete the delimited file source creation.

Figure 234: Component Inspector with Properties Shown

You will see your new data source listed in the Component Explorer under the
Sources component branch. Also, the Component Inspector will show the details of
your new delimited file data source. The Component Inspector will show extra
details or properties that were not available for setting in the Add Source dialog
window.
These extra properties include the following:

Access:
Read - (default) If this is a new file Transall will create it

with read access.
Read Write - If this is a new file Transall will create it with read/

write access.
ByteOrder:
Any - (default) Transall will assume any binary data

being accessed in this file is in the native binary
format of the platform Transall is running on.

Transall How To’s:

357

Little-Endian - Transall will assume any binary data being
accessed in this file is in little endian (least
significant bits in) format and Transall will perform
any binary manipulation required to process the
data on the platform that Transall is operating on.
Note: data on the WIN32 platform is Little Endian.

Big-Endian - Transall will assume any binary data being
accessed in this file is in big endian (most
significant bits in) format and Transall will perform
any binary manipulation required to process the
data on the platform that Transall is operating on.

CharacterSet:
Any - (default) Transall will assume string data being

accessed in this file is in the native character set of
the platform Transall is running on.

ASCII - Transall will assume string data being accessed in
this file is in the ASCII character set and Transall
will perform any string manipulation required to
process the data on the platform that Transall is
operating on.

EBCDIC - Transall will assume string data being accessed in
this file is in the EBCDIC character set and
Transall will perform any string manipulation
required to process the data on the platform that
Transall is operating on.

Unicode encodings One of these encodings is specified: UTF-8, UTF-
16, UTF-16LE, UTF-16BE, UCS-2, UCS-2LE,
UCS-2BE, UCS-4, UTF-32, UCS-4LE, UTF-32LE,
UCS-4BE, UTF-32BE, UTS-6

Windows code pagesOne of these code pages is specified:
W_CENTRAL_EUROPE, W_CYRILLIC,
W_LATIN1, W_GREEK, W_LATIN5,
W_HEBREW, W_ARABIC, W_BALTIC,
W_VIETNAMESE, W_THAI, W_JAPANESE,
W_KOREAN, W_S_CHINESE, W_T_CHINESE

DOS code pages One of these code pages is specified:
D_USLATIN, D_ARABIC1, D_GREEK, D_BALTIC,
D_LATIN1, D_LATIN2, D_CYRILLIC,
D_TURKISH, D_LATIN1EURO,
D_PORTUGUESE, D_ICELANDIC, D_HEBREW,
D_CANADIANFRENCH, D_ARABIC, D_NORDIC,
D_CYRILLICRUSSIAN, D_GREEK2, D_THAI,
D_ARABICASMO

ISO code pages One of these code pages is specified:
ISO_8859_1, ISO_8859_2, ISO_8859_3,
ISO_8859_4, ISO_8859_5, ISO_8859_6,
ISO_8859_7, ISO_8859_8, ISO_8859_9,
ISO_8859_10, ISO_8859_11, ISO_8859_13,
ISO_8859_14, ISO_8859_15, ISO_8859_16

Other code pages One of these code pages is specified: O_KOI8R,
O_KOI8U, O_KOI8RU, O_KOI8UNI, O_BIG5,

Chapter 21 – Managing Transall Applications

358

O_GB12345, O_GB2312, O_JIS0201,
O_JIS0208, O_JIS0212, O_JOHAB, O_KSC5601,
O_KSX1001, O_WANSUNG, O_GB18030

EBCDIC code pagesOne of these code pages is specified:
E_DFXDEFAULT, E_USCANADA,
E_LATIN5TURKISH, E_INTERNATIONAL,
E_GREEK, E_HEBREW, E_ROECELATIN2,
E_JAPANESEKATAKANA_EX, E_ARABIC,
E_KOREAN_EX, E_CYRILLIC_RUSSIAN,
E_LATIN1_EURO, E_CYRILLIC_S_EUROPE,
E_USCANADA_EURO, E_GERMANY_EURO,
E_DENMARKNORWAY_EURO,
E_FINLANDSWEDEN_EURO, E_ITALY_EURO,
E_SPANISH_EURO, E_UK_EURO,
E_FRANCE_EURO, E_INTL_EURO,
E_ICELAND_EURO.

Note On the Unicode encodings, a suffix of LE means Little Endian and BE means Big
Endian and this refers to text storage. Refer to the ByteOrder property for specifying the
storage of binary numbers.

ErrorHandler:
Automatic - (default) Transall will automatically handle and

recover from errors. Transall will “throw” only
critical errors that must be “caught” via an On Error
Resume Next type statement.

Manual - Transall will ignore all errors and return errors to
your Scripts or LogicTrees for handling.

FieldDelimiter:
This is either a single character or a string of
characters that Transall will look for in the data
fields to locate each field’s data value. The default
for this is a double quote. If the incoming data has
no double quotes delimiting a field’s value,
Transall will still correctly process the field.

Transall How To’s:

359

FieldSeparator:
This is either a single character or a string of
characters that Transall will look for in the data
records to locate each data field. The default for
this is a comma.

FirstRecordHeader:
No - (default) Transall will not treat the first record as a

header record.
Yes - Transall will treat the first record as a header

record causing Transall to skip this record.
LockMode:
Write - (default) Transall will set the file’s access

permission to lock out other processes from writing
to the file while Transall has the file open for
reading.

Read - Transall will set the file’s access permission to lock
out other processes from reading the file while
Transall has the file open for reading.

Read Write - Transall will set the file’s access permission to lock
out other processes from having any access to the
file while Transall has the file open for reading.

Shared - Transall will NOT set the file’s access permission
to lock out other processes from having access to
the file while Transall has the file open for reading.

Mode:
Input - (default) Transall will open the file for input access

in “cooked” or translated mode. In this
compatibility mode, carriage-return/line-feed
combinations are converted to just line-feed
symbols. This yields a common compatibility with
UNIX file systems.

Binary Input - Transall will open the file for input access in “raw”
or untranslated mode. In this mode, carriage-
return/line-feed combinations are NOT converted
to just line-feed symbols.

OpenMode:
Automatic - (default) Transall will automatically generate logic

to open to this file for you.
Manual - Transall will generate logic to open to this file but

will not automatically call the logic. You must
manually place a call to the generated logic in your
Transall Scripts or LogicTrees to have Transall run
the instructions that open this file. You might want
to select Manual if you need to have extra control
over when a file is opened by Transall. This may
be the case if you have a need to open and close a
file several times during a Transall run. By default
the Automatic open mode opens the file and holds
the file open for the life of the Transall run, closing
the file when Transall is ready to terminate.

Chapter 21 – Managing Transall Applications

360

Separator:
This is a reference to a Transall resource (setup
under Tools>Options>Separators) that is either
a single character or a string of characters that
Transall will look for in the file to locate each data
record.

Why There Are Multiple Records for Some File Data Sources
or Destinations
Each record defined to a delimited file data source or destination describes a
grouping of fields that can occur in the file. Many files have multiple record types
(i.e. many different groupings of fields that might appear in them). For Transall to
process each record type, a corresponding record needs to be setup in the delimited
file data source or destination. Therefore, if you have a file with three record types,
you would setup a delimited file data source or destination with three records, one
for each record type. When Transall is reading records from a file it will also look
for a special field in each record that serves as a record type identifier. For files that
have only one record type, no identifier needs to be defined, since all the records are
the same. But, for files that have many record types, Transall needs a field to act as
a record identifier that tells Transall at run-time what record type it has read so that
Transall can map the file record’s data to the correct Transall record format for use
by your Transall logic.

Adding a Record Type to a Delimited File Data Source or
Destination
To add a record type to a Transall delimited file data source or destination you must
first locate or setup a new delimited file data source or destination for the record.
Once a delimited file data source or destination has been selected, open the data
source or destination’s Assistant window by double clicking on the desired data
source or destination in the Component Explorer

Transall How To’s:

361

.

Figure 235: Add Record Menus

With the Assistant window open, select the Resource>Add Record menu item or
right mouse click in the Records List of the File Assistant.

Figure 236: Adding New Record

Right-click pop-up
menu

Chapter 21 – Managing Transall Applications

362

This will add an empty record to the delimited file’s definition.

Figure 237: Properties Tab on Component Inspector

After adding a record, change its name on the Properties tab of the Component
Inspector to a meaningful name for the record.

Figure 238: Adding Name Field to New Record

Note The name cannot contain special characters or spaces but can contain underscores “_”
and dashes “-”.

Transall How To’s:

363

Once the record has been setup you can start adding fields to the record. To add a
field, enter the field name into the Name column of the File Assistant on the field
row with a star in the row border.

Figure 239: Adding Datatype to New Record

Press the tab key to move to the Datatype column and select a data type for the field.
Press the tab key again to set or clear the Delimited indicator for the field.

Figure 240: Selecting Field Row

Note The delimited indicator tells Transall to respect or ignore the FieldDelimiter value set at
the data source or destination level for this field. If this value is set to true (checked) and
the field’s data does not have a field delimiter, Transall will still processing the field’s data
correctly so it is generally best to leave this field checked. Setup one field for each field
in the record type that Transall can expect in the file. The fields need to be in the same
order as the fields in the file.

Chapter 21 – Managing Transall Applications

364

If you need to move a field up or down you can do so by clicking in the gray area to
the left of the field’s number column in the File Assistant. This will select the field’s
row in the File Assistant.

Figure 241: Move Field Row to New Position

With the row selected, you can drag the field from the gray area to the left of the
field’s number column to a new location in the list of fields for the record. You will
see a colored line in the list of record fields as you perform the drag that indicates
where the field will go when you drop the field.

Figure 242: Select Field Row to View Properties in Component Inspector

Transall How To’s:

365

After adding all the fields to the record and arranging the field order, click on the
record name in the File Assistant. This will cause the record’s properties to be
displayed in the Component Inspector.
If the data source or destination has more than one record, a record ID field needs to
be defined. To define a record ID field, select a field in the Identifier field property
of the Component Inspector and then set the IdentifierValue property in the
Component Inspector. At run-time Transall will look in this Identifier field for the
IdentifierValue value to recognize data from the file as belonging to this record.

Chapter 21 – Managing Transall Applications

366

367

Chapter 22- Transall Threaded Data Manager

Transall Threaded Data Manager

INTRODUCTION
This document describes the Transall Threaded Data Manager (TDM) facility, a
component of the Transall product suite that enables horizontal process scaling for
Docuflex and Transall applications in support of high-volume publishing and data
processing systems. The TDM enables multi-process concurrency, coordination, and
load balancing for the Docuflex and Transall product suites.
The TDM enables multiple Docuflex and Transall applications running Transall’s
Host execution engine to cooperatively work together by managing sequential file
read and write Input/Output from Docuflex and Transall processes to a set of data
files shared by the processes and managed by the TDM.
This facility has been implemented on the Windows and UNIX platforms supported
by Transall.

COMPONENTS
The TDM consists of the following components:

Component Explanation
trandman The TDM server component that manages sequential file read and write Input/Output over a TCP/IP socket

to a set of data files shared by Docuflex and Transall processes.

tdmwait An application that enables a main script’s processing to wait while detached processes it started all run at
the same time (as illustrated in the following batch file).

rem Start four concurrently-running copies of batch dflx32
start dflx32 tdm=::job
start dflx32 tdm=::job
start dflx32 tdm=::job
start dflx32 tdm=::job
rem Wait while the four running copies of batch dflx32 do their work
tdmwait ::job dflxout

tdmjobs An administrative application that queries the trandman component to provide a list of active connections
to the TDM server.

tdmterm A program that asks a TDM server (trandman) to terminate when all processing is complete on the server.
You can use this facility in batch processing, that utilizes the TDM, to accomplish the following:
• start the TDM server at the top of the batch process
• stop the TDM server at the end of the batch process before the process exits

Chapter 22 – Transall Threaded Data Manager

368

EXAMPLES
The Docuflex publishing process usually has the following steps, that are performed
in order, in a single “thread” of processing:

Transall Host The Transall Host execution applications: tranexe, tranhost, trandymn, and tranrule. The Transall Host
also includes the Docuflex batch processing applications that imbed the Transall host: dlfx32, dflxux, and
dflxout. All these applications are now enabled to have their sequential file read and write Input/Output
managed by the TDM server.

Component Explanation

Examples

369

Chapter 22 – Transall Threaded Data Manager

370

With the TDM facility, these steps can be processed by multiple copies of Transall
or Docuflex concurrently (e.g., the data gathering process “thread” can run at the
same time as the Document Composition process “thread”)

Examples

371

Chapter 22 – Transall Threaded Data Manager

372

CONNECTING TRANSALL AND DOCUFLEX TO THE TDM
To enable Transall and Docuflex to use the TDM you must:

• set a “ThreadedDatMgrSupt” property to “Enabled” for the Docuflex DDF Data
Destination in Transall (see Setting up Transall Projects to use the TDM on page
381).

• pass a new command line parameter, “/TDM ::”, to the Transall Command Line
host (see Command-Line Reference on page 375).

• pass a new command line parameter, “TDM=::”, to Docuflex composition (see
Command-Line Reference on page 375).

Note These are the minimum updates needed to enable TDM cooperative processing in
existing Transall and Docuflex applications.

ADVANCED EXAMPLE OF DATA GATHERING AND
DOCUMENT COMPOSITION
Here is another, more robust, example showing how a high-volume Docuflex client
might implement the TDM to maximize data gathering and document composition
throughput. The numbers in the process boxes represent the startup order for the
job’s processes.

:

Connecting Transall and Docuflex to the TDM

373

Each of the job’s processes will be started “almost simultaneously” from a command
script or batch file driving the job. These processes start almost simultaneously
because each process will launch using a “start with no wait” command option from
the command script.
For this example, it is assumed that Process 0, the TDM facility, is already running
as a service or background task.
The batch job starts with Process 1 by starting an initial Transall application process.
This application runs a light-weight Transall data extract to create a file that has one
record in it for each Docuflex document to be processed by this job. This initial
application process does not gather all the details for each Docuflex document; it
instead only gathers “key” information for each document.
The batch job continues with Process 2—this process may (and probably will) start
before Process 1 completes, because Process 1 was started with a “no wait”
command option. This option causes the batch script not to wait for an applications
started by the script to complete before proceeding to the next instruction in the
script. Process 2 launches three copies of a Transall application that each
concurrently read from the file being written to by Process 1. These applications,
started by Process 2, gather all the details for each Docuflex document. They work
concurrently to write these details to a single Docuflex Data File (DDF) for use by
Docuflex composition. None of these copies of Transall, started by Process 2, will
read the same record from the file being written to by Process 1, because the file is
managed by the TDM facility.
Next, Process 3 of the batch job launches four copies of Docuflex composition.
Again, these may start before the Transall applications started by Process 2 have
completed because the Transall applications were started with a “no wait” command
option. Each Docuflex composition copy will concurrently read from the DDF file
being written by the Transall applications started by Process 2. The Docuflex
applications will each receive unique document records from the DDF file because
the file is managed by the TDM facility. Each Docuflex composition copy will write
composed documents to its own “stacked” Document Compound Document (DCD)
file. These DCD files are not managed by the TDM facility, but a single stacked
index file for the composition job is, and the TDM will keep the records written to
the shared stacked index file from being written on top of each other as the four
copies of Docuflex composition run concurrently.
This configuration allows all eight applications, started by the three batch job
processes, to run concurrently in a load balanced system.

Chapter 22 – Transall Threaded Data Manager

374

SAMPLE BATCH COMMAND SCRIPT
Here is a sample Windows batch command script that implements the prior advanced
example:

where:

@ REM Define parameter file locations
@
@ SET TDM=server_name:5650:AsampleJob
@
@ SET DFLXINI1=c:\DocuCorp\Docuflex\Projects\docuflx1.dde
@ SET DFLXINI2=c:\DocuCorp\Docuflex\Projects\docuflx2.dde
@ SET DFLXINI3=c:\DocuCorp\Docuflex\Projects\docuflx3.dde
@ SET DFLXINI4=c:\DocuCorp\Docuflex\Projects\docuflx4.dde
@
@ REM Start Initial Transall process
@
@ SET TRA=c:\DocuCorp\Docuflex\Projects\sample\samptrst.tex
@ SET DDF=C:\docucorp\docuflex\Projects\sample\sampdata.ddf
@ SET TFL=C:\docucorp\docuflex\Projects\sample\samptran.txt
@
Start “c:\program files\maitland software\tranexe” /TDM %TDM% %TRA% start %TFL%
@
@ REM Give initial process 5 seconds to get running
@
“c:\program files\maitland software\tdmwait” -q -w 5
@
@ REM Start Data Gathering Transall process
@
@ SET TRD=c:\DocuCorp\Docuflex\Projects\sample\samptrdf.tex
@
Start “c:\program files\maitland software\tranexe” /TDM %TDM% %TRD% start %TFL% %DDF%
Start “c:\program files\maitland software\tranexe” /TDM %TDM% %TRD% start %TFL% %DDF%
Start “c:\program files\maitland software\tranexe” /TDM %TDM% %TRD% start %TFL% %DDF%
@
@ REM Start Docuflex processes
@
@ SET DDP=c:\DocuCorp\Docuflex\Projects\sample\sampdflx.ddp
@
Start “c:\docucorp\docuflex\dflx32” dde=%DFLXINI1% ddp=%DDP% ddf=%DDF% tdm=%TDM%
Start “c:\docucorp\docuflex\dflx32” dde=%DFLXINI2% ddp=%DDP% ddf=%DDF% tdm=%TDM%
Start “c:\docucorp\docuflex\dflx32” dde=%DFLXINI3% ddp=%DDP% ddf=%DDF% tdm=%TDM%
Start “c:\docucorp\docuflex\dflx32” dde=%DFLXINI4% ddp=%DDP% ddf=%DDF% tdm=%TDM%
@
@
@ REM Wait for processes to complete
@
“c:\program files\maitland software\tdmwait” -q %TDM%

Variable Meaning
TDM Connection string to the TDM.

DFLXINI# Docuflex environment setting file
TRA Name of the Transall initial data gathering application
TFL Name of the initial file created by Step 1 that has one record in it for each Docuflex document to be processed

by this job. This file contains “key” information for each document
TRD Name of the Transall detailed data gathering application
DDF Name of the Docuflex Data File

Connecting Transall and Docuflex to the TDM

375

NAMED JOBS IN THE TDM
The connection string that accesses the TDM is formatted with three sections that are
separated by colons—Network address, port number, and Job Name.

Naming connections enables the tdmwait facility to pause a command script or
batch file, based on the connections to the TDM with a particular name. Let’s say
you have two processes—one for producing letters and another for producing
statements. Let’s also say it’s desirable to have both processes run at the same time
through the same instance of the TDM. By setting the TDM connection string for
both jobs with different Job Name identifiers (e.g., “letters” and “statements”), the
command script or batch files used to run the processes can have calls to tdmwait
that only wait on the TDM connections for their work. Both processes for producing
letters and statements can run concurrently, but independently, through a single
instance of the TDM.
There is also a facility called tdmjobs that lists job names and the number of
connections for each job name running on the TDM, so you can check the status of
processing as jobs run.

COMMAND-LINE REFERENCE

TRANDMAN
Enter the following syntax on the command line:

TRANDMAN [/option -option ...] [port#
default=5650]

where:

DDP Name of the Docuflex Project to be executed by the Docuflex composition process
Variable Meaning

Example The connection string “server_name:5650:JobOne” means to look for an instance of the
TDM running on the computer at the IP address pointed to by the “server_name”
Domain Name Service (DNS) name on port 5650 and mark this connection with the
name “JoOne”.

Option Meaning
-D Debug mode, lists server actions to console for debugging support (causes server to run very

slowly).

-INSTSERV Windows only, installs TDM as a Windows Service.
-L Opens the TCP/IP socket port on the ‘localhost’ IP address for the workstation.
-Q Suppress display of TRANDMAN startup banner.

-REMSERV Windows only, removes the TDM if it was installed as a Windows Service.
-T Terminate execution after all clients disconnect.
-W Wait latency time (default = 4 seconds).

Chapter 22 – Transall Threaded Data Manager

376

TDMWAIT
Enter the following syntax on the command line:

TDMWAIT [/option -option ...] [JobName …]

where:

TDMJOBS
Enter the following syntax on the command line:

TDMJOBS [/option -option ...] [JobName …]

where:

Option or
Parameter Meaning
-A Wait on all jobs connected to TDM (ignore JobName parameter).
-W Wait a minimum number of seconds.
-Q Suppress display of TDMWAIT startup banner.
JobName A TDM connection string in the format of:

[ServerName]:[PortNumber]:[JobName]
-or-
JobName
where:
ServerName Optional parameter with Domain Name or IP address of a server

where the TDM server is running.
PortNumber Optional parameter with Port Number on the server on which the

TDM is listening.
JobName Optional parameter with Job Name of connections of which to wait for

completion.

Option or
Parameter

Meaning

-Q Suppress display of TDMJOBS startup banner.

JobName A TDM connection string in the format of:
[ServerName]:[PortNumber]:[JobName]
-or-
JobName
where:

ServerName Optional parameter with Domain Name or IP address of a server
where the TDM server is running.

PortNumber Optional parameter with Port Number on the server on which the
TDM is listening.

JobName Optional parameter with Job Name of connections for which to list
the connection count.

Connecting Transall and Docuflex to the TDM

377

TDMTERM
Enter the following syntax on the command line:

TDMTERM [/option -option ...][server][:port]

where:

Transall
Enter the following syntax on the command line:

TRANEXE [/tdm
[ServerName]:[PortNumber]:[JobName]]

where:

Docuflex
Enter one of the following syntax statements on the command line:

DFLXUX tdm=ServerName:PortNumber:JobName
-or-
DFLX32 tdm=ServerName:PortNumber:JobName

where:

Option or Parameter

Meaning

-Q Suppress display of TDMTERM startup banner.
server Domain Name or IP address of a server where the TDM server is running.
port Port Number on the server on which the TDM is listening.

tdm A TDM connection string in the format of:
[ServerName]:[PortNumber]:[JobName]
where:
ServerName Optional parameter with Domain Name or IP address of a server

where the TDM server is running.
PortNumber Optional parameter with Port Number on the server on which the

TDM is listening.
JobName Optional parameter with Job Name of connections of which to wait

for completion.

tdm A TDM connection string in the format of:
[ServerName]:[PortNumber]:[JobName]
where:

ServerName Optional parameter with Domain Name or IP address of a server
where the TDM server is running.

PortNumber Optional parameter with Port Number on the server on which the
TDM is listening.

JobName Optional parameter with Job Name of connections of which to
wait for completion.

Chapter 22 – Transall Threaded Data Manager

378

STARTING THE TDM SERVER IN AUTHENTICATION
MODE
The Threaded Data Manager server may optionally be started in authentication
mode. When the server is started in authentication mode, Transall and Docuflex
client applications must provide the proper authentication string to connect to the
server. In addition, the TDMTerm program must provide the authentication string to
stop the server. The authentication mode is backward compatible with existing
projects, when they are run with newer versions of Transall, so that existing projects
do not need to be recompiled to take advantage of this feature.
Authentication mode is enabled on the server either via the –A command line option
(see Command-Line Reference on page 375) or by setting the TDM_AUTH
environment variable to the authentication string before starting the process. Client
applications enable authentication mode by either appending
“:authentication_string” to the connect string or by setting the TDM_AUTH
environment variable to the authentication string before starting the application.
The command line references for Trandman, and TDMTerm need to be modified as
shown in the following sections.

TRANDMAN
Enter the following syntax on the command line:

TRANDMAN [/option -option ...] [port#
default=5650]

where:

Option Meaning
-A AuthCode Authorization code. All applications must use authorization to connect.
-D Debug mode, lists server actions to console for debugging support (causes server to run

very slowly).
-INSTSERV Windows only, installs TDM as a Windows Service.
-L Opens the TCP/IP socket port on the ‘localhost’ IP address for the workstation.
-Q Suppress display of TRANDMAN startup banner.

-REMSERV Windows only, removes the TDM if it was installed as a Windows Service.
-T Terminate execution after all clients disconnect.
-W Wait latency time (default = 4 seconds).

port# Port Number on which the Threaded Data Manager should listen.

Connecting Transall and Docuflex to the TDM

379

TDMTERM
Enter the following syntax on the command line:

TDMTERM [/option -option
...][server][:[port][:authCode]]

where:

The Transall and Docuflex command line options in this section need to be changed
as shown in the following sections.

Transall
Enter the following syntax on the command line:

TRANEXE [/tdm
[ServerName]:[PortNumber]:[JobName][:Authenticati
on]]

where:

Option or Parameter

Meaning

-Q Suppress display of TDMTERM startup banner.
server Domain Name or IP address of a server where the TDM server is running.
port Port Number on the server on which the TDM is listening.
authCode (Optional) Authentication code required by server for access.

tdm A TDM connection string in the format of:
[ServerName]:[PortNumber]:[JobName][:Authentication]
where:
ServerName Optional parameter with Domain Name or IP address of a server where the TDM

server is running.
PortNumber Optional parameter with Port Number on the server on which the TDM is listening.
JobName Optional parameter with Job Name of connections of which to wait for completion.
Authentication Optional authentication string required to connect to server.

Chapter 22 – Transall Threaded Data Manager

380

Docuflex
Enter one of the following syntax statements on the command line:

DFLXUX tdm=ServerName:PortNumber:JobName
-or-
DFLX32 tdm=ServerName:PortNumber:JobName

where:

tdm A TDM connection string in the format of:
[ServerName]:[PortNumber]:[JobName][Authentication]
where:
ServerName Optional parameter with Domain Name or IP address of a server where the TDM

server is running.
PortNumber Optional parameter with Port Number on the server on which the TDM is listening.
JobName Optional parameter with Job Name of connections of which to wait for completion.
Authentication Optional authentication string required to connect to server.

Setting up Transall Projects to use the TDM

381

SETTING UP TRANSALL PROJECTS TO USE THE TDM
A new “ThreadedDatMgrSupt” property has been added to Transall Delimited,
Fixed, and COBOL file type Data Sources and Destinations. This property defaults
to “Disabled”. To enable a Transall Data Source or Destination to run through the
TDM, change the property value for ThreadedDatMgrSupt to “Enabled”. This
causes the Transall editor to generate extra code in the Open event script for Data
Sources or Destinations to connect to the TDM upon opening the file.

Figure 243: Set ThreadedDatMgrSupt to “Enabled”

Files connected to the TDM continue to work like files that aren’t connected to the
TDM (with some restrictions): files that are accessed through the TDM may not
explicitly seek to an offset in the file. The TDM provides sequential access, either
read or write, to files; however, it doesn’t at this time provide random access to files.
Because of this limitation, only Data Sources and Destinations with one record type
defined are available to have their ThreadedDatMgrSupt property set to “Enabled”.

Chapter 22 – Transall Threaded Data Manager

382

When the ThreadedDatMgrSupt property is set to “Enabled,” the Transall editor
generates script in the Open events of Sources and Destinations that will connect
access for the Source or Destination to be performed by the TDM, using one of two
new Transall system fields.

• TrnSys$TdmConnectCmdLine—this system constant field is populated with the
value of the string that was passed to Transall (or Transall running under
Docuflex) on the TDM command line parameter.

• TrnSys$SourceName.TdmConnectString—this system field is generated for
each Data Source or Destination that has its ThreadedDatMgrSupt property set
to “Enabled,” where SourceName is the Data Source or Destination name in
Transall.

To have Transall connect a Data Source or Destination to the TDM, either the TDM
command line parameter must be passed to Transall, or the new
TrnSys$SourceName.TdmConnectString field must be populated with a TDM
connection string before the Open event script is executed for the Data Source or
Destination.
If both the TrnSys$SourceName.TdmConnectString and the
TrnSys$TdmConnectCmdLine are provided, the
TrnSys$SourceName.TdmConnectString will be used to connect to the TDM for the
Data Source or Destination.
When setting the TDM connection string for an individual Data Source or
Destination, a good place to populate the TrnSys$SourceName.TdmConnectString
value is in the OnOpenBefore event of the Data Source or Destination.
The TDM connection string consists of the following parameters:

[ServerName]:[PortNumber]:[JobName][Authenticatio
n]

where:

The TDM connection string can be as simple as “::” which means to use the default

• Server Name (e.g., the current workstation where Transall is running)

• Port Number (e.g., defaults to 5650)

• Job Name (e.g., defaults to nothing)

• Authentication (e.g., uses TDM_AUTH environment setting)

Parameter Meaning
ServerName Optional parameter with Domain Name or IP address of a server where the TDM

server is running.
PortNumber Optional parameter with Port Number on the server on which the TDM is listening.
JobName Optional parameter with a Job Name label for this connection to the TDM.

Authentication Optional authentication string required to connect to server.

Setting up Transall Projects to use the TDM

383

The JobName parameter is important because it tells the TDM that the files open on
this connection are part of a job under this name. Using a JobName enables batch
command scripts to use the tdmwait facility to wait for all connections labeled with
a particular job name to complete before proceeding to the next step in the batch
command script. To pass just a job name in the TDM connection string, the string
will look like “::AJobName”. This means to use the default Server Name, the default
Port Number, and “AJobName” as the Job Name string.

Chapter 22 – Transall Threaded Data Manager

384

385

Chapter 23- Transall Gateway

Transall Gateway

OVERVIEW

The Transall Gateway is a server process which runs on a remote machine and
allows
Transall, running on a local machine to access files on the remote machine, even if
there is no shared filesystem between them (for instance, between a PC and z/OS).
The Gateway server may be run on the following platforms:
• AIX

• Linux

• Solaris

• Windows

• z/OS

A Transall Gateway Server can also be accessed by processes running on any of the
above platforms. The Transall Gateway Server runs in either multi-threaded mode
(AIX, Linux, Solaris, Windows) or in multi-tasking mode (z/OS) to service requests
from remote clients. Clients using the Gateway client interface, which is built into
Transall, can carry out an assortment of basic file processing functions on the host
Gateway Server where the Gateway is running, including:
• Open files for I/O

• Close files

• Read data

• Write data

• Seek within open files (where supported by platform)

• Get file position via “tell” (where supported by platform)

• Use the “getpos” to obtain the current file position (all platforms)

• Use “setpos” to return to a previous file position (all platforms)

• Remove files

• Get file information (where supported by platform)

• Query system type (Window, Unix, z/OS) where host is running

Chapter 23 –

386

In addition, if the Gateway Server is running on z/OS, the following additional
functions are available:

• Open a file using z/OS specific attributes (RECFM, LRECL, VSAM, etc.)

• Search a VSAM file for a record (KSDS)

• Retrieve a record from a VSAM file

• Insert a record into a VSAM file

• Replace a record in a VSAM file

• Delete a record from a VSAM

• Remove a VSAM file

TRANSALL INTERFACE

Transall's scripting syntax and GUI for the Open file statement allow the author of
the Transall application to specify a “Gateway” for use in accessing a file remotely.
The properties for file data sources and destinations use the property “cx” to identify
the Gateway Server that will be used to access the file on the remote system.

387

The syntax for the open command also provides support for an optional Gateway

name:
| Fast |
Open filename [At gateway [With | Safe |
Buffering]] ...
| No |

The filename may be either a quoted string or a string variable that will contain the
name of the file to open when the script is run. Note that if you are opening a file on
a z/OS system via a Gateway, the filename specified is not a DDName, but is a fully
qualified name, such as “USERID.TEST.FILE” or “USER.NOTES(NOTE1)”. The
gateway parameter names a Transall Gateway Server that is used to access the file
on the remote system by a Gateway identifier whoes final value will be passed on
the Transall command line via a “/gate” option (see: Accessing Files Through a
Transall Gateway with Tranexe). The Gateway name may be specified as either a

Chapter 23 –

388

quoted string, or as a string variable that will contain the name of the Gateway when
the script is run. The “With...Buffering” clause is an advanced option that may be
used to control how data is buffered as it is read from the Gateway. “Fast” buffering
mode allows for faster transfers of data, but is not reliable if the file is going to be
accessed randomly, or it is not a binary file. “Safe” buffering is slightly slower, but
is reliable for either text or binary files. If the “With...Buffering” clause is excluded,
the file is opened in “Safe” mode if it is a “text” file and “Fast” mode if it is a
“binary” file. Valid Open statements include things like:

Open Source1.FileName At “Billing” For Binary Input
Access Read Lock Write As Source1.Handle

(Opens the binary file at the Gateway Server running on the “Billing” machine with
fast buffering by default)
Open Source1.FileName At “Sales” For Input Access
Read Lock Write As Source1.Handle

(Opens the text file at the Gateway on the “Sales” machine with safe buffering by
default)
Open Source1.FileName At “Logging” With No
Buffering For Input Access Read Lock Write As
Source1.Handle

(Opens the text file at the Gateway on the “Logging” machine with no read
buffering

ACCESSING FILES THROUGH A TRANSALL
GATEWAY WITH TRANEXE

The command line of Tranexe has been modified to accept the option: “/gate”. The
“/gate” option should be followed by the Gateway connect string. The Gateway
connect string consists of multiple parts: the name of the Gateway (as specified in
the appropriate “Open” statements in the Transall program), optionally, the address
of the Gateway, if it is not the same as the name of the Gateway, and the port num-
ber to which the Gateway server is listening. The address value can contain the
TCP/IP address value of the Server on which the Transall Gateway is running, or
the Server’s Domain Name System (DNS) name. The connect string is specified as
either:
Name:port
or
Name/address:port
Using the format which uses a separate name and address allows you to change the
location of the server that you are reading or writing from without having to change
the Transall programs themselves. This can be handy in the event that you want to
carry out the same task at various remote servers, or simply in the case that a
machine has been retired and a new machine with a new address is replacing it.
When your program is run, and attempts to open a file via a Gateway, Tranexe will
see if that Gateway was identified on the command line. If so, the program will use

389

the Gateway name and address specified to attempt the file open on the remote
server. If that name is not found, or no “/gate” option was given, Tranexe will
attempt to open the file locally. This option allows the developer to write scripts that
will run unchanged on multiple platforms, accessing files that reside on only one
platform.

For instance, a script could be written which reads data from a VSAM file on the
mainframe and uses the data to write a report to a PC file. By using gateway-style
file opens for both the input and output files, the same file would run on the PC—
accessing the VSAM data through a gateway— and on the mainframe—writing the
report to a file on the PC.

The following example illustrates running a script which opened its input and
outputfiles through gateways:
•
••
' Open the VSAM file
Open TrnSys$Source1.FileName At “MVSGATE” For VSAM
Input AMParms:
keylen=20,keyoff=0 As TrnSys$Source1.Handle
•••
'Open the PC file
Open TrnSys$Destination1.FileName At “PCGATE” For
Binary Output Access
Write Lock Write As TrnSys$Destination1.Handle
•••

The following command:
tranexe /gate MVSGATE:2301 sample1.tex Run

will run the sample1.tex program, attempting to open the VSAM file via the
Gateway server on the “MVSGATE” machine via port 2301. Since the “PCGATE”
gateway address wasn't identified on the Tranexe command line, the output file
would be written onto the local machine.
Running the same program on z/OS with the following JCL:
//JS010 EXEC PGM=TRANEXE,COND=(0,NE),
// PARM='SAMPLE1 /gate PCGATE:2001 Run'

opens the VSAM file locally (since no address for the “MVSGATE” was specified)
and would attempt to create the output file via the Gateway server running on the
“PCGATE” machine via port 2001.

RUNNING THE GATEWAY SERVER
Prior to starting the Gateway Server application, you should verify that TCP/IP is
installed and running on your server machine. In addition you should set aside a
TCP/IP service port to be used by the Gateway server. You may need the
administrator of the machine to provide a port number to you. Once you have
verified that TCP/IP is operational and you have a service port to use, you are ready

Chapter 23 –

390

to run the Gateway server. The Gateway server is a started from the command line
and takes only one command line parameter, the service port number. If running the
server on a Windows or UNIX platform, you would simply type:
trgateip port
where “port” is the number of the TCP/IP port that the server should listen to for
connections from remote Gateway clients. If running the server on z/OS, your JCL
might look like:
//JS010 EXEC PGM=TRGATEIP,COND=(0,NE),

// PARM='2345'

391

Appendix A- Statement Syntax

Statement Syntax

<numeric value> = Abs (<numeric expression >)
Returns the absolute value of a number.

<numeric ASCII value> = Asc (<string expression >)
Returns the ASCII code value of the first character in the string expression.

<numeric value> = Atn (<numeric expression >)
Returns the arctangent of a number.

Beep
When executed, this function causes a beep.

CAny(<Any>)
Attempts to convert data to any data type.

Call <method sub/function name> ([<expression>,<expression>...])
Call a method ignoring return value.

<datetime> = CDate (<string expression>)
Convert string expressions to datetime data types.

<double> = CDbl (<string expression>)
Convert string expressions to double data types.

ChDir <string path>
Changes the Current directory but not the default drive.

ChDrive <string drive>
Changes the current drive.

Choose(<index>, <choice1>[, ... <choice n>])
Returns item #<index> from the list passed in. For example, if the value of index was 2, the second item from the list would
be returned. Note that the index must be a numeric value that can be assigned to an integer. If the index passed in is less
than one, or exceeds the number of choices passed in, a value of Null is returned. Choose() evaluates every choice in the
list, even though only one is returned, so you should be careful to avoid unwanted side effects.

<string> = Chr$ (<numeric expression ASCII value>)
Returns a one character string for the ASCII value.

ClassClassRefClass {GUID} (See LibGUID)
(Global Only) Define the Global Unique ID (GUID) for the Transit Class ActiveX Object.

<long> = CLng (<string expression>)
Convert string expressions to long data types.

Appendix A – Statement Syntax

392

<Long Long> = CLngLng(<string expression>)
Converts values to Long Long.

<integer> = CInt (<string expression>)
Convert string expressions to integer data types.

Close [#]<file number>
Close file.

CloseDocumentSet(<String FileName>)
Closes a DDF file and flushes all buffered file I/O for a DDF to the file on disk. If the DDF is written to again after issuing a
CloseDocumentSet, it will truncate and overwrite the DDF file contents. This function should be used when calling Transall
as a server, such as when Transall is creating DDF files under Docupresentment transactions or via calls to Transall running
as an ActiveX server.

<COBOL Numeric> = CNum(<String>)
Convert numeric string to the COBOL Numeric types of UNum (unpacked numeric) or PNum (packed numeric).

<numeric value> = Cos (<numeric expression >)
Returns the cosine of an angle.

Set objectvariable = CreateObject("progID", ["servername"])
The progID argument should be a fully qualified class name to the object being created; for example,
"MyProject.TransObject". The optional servername argument can be used to create an object on a remote machine across
a network. This argument takes the Machine Name portion of a share name. For example, with a network share named
"\\MyServer\Public", the servername argument would be "MyServer."

<string path for current drive> = CurDir (<string drive>)
Returns current path.

CvtCurrencyToEuro(amount, exchange_rate)
In compliance with EC Regulation 1103/97, this function takes an amount of a national currency and an exchange rate with
the Euro (based on 1 Euro) and converts the national currency amount to Euros. The original amount, the exchange rate,
and the amount returned are all UNum data types. The amount returned is rounded to the nearest cent (.105 rounds to .11).

CvtCurrencyFromEuro(amount, exchange_rate, digits_on_right_of_decimal)
In compliance with EC Regulation 1103/97, this function takes an amount in Euros, an exchange rate with the Euro (based
on 1 Euro), and the number of digits to the right of the decimal to retain in the result, and converts the amount from Euros
to the new currency. The original amount, the exchange rate, and the amount returned are all UNum data types.

CvtCurrencyToCurrency(amount, exchange_rate_for_amount, rate_for_new_currency,
digits_on_right_of_decimal)

In compliance with EC Regulation 1103/97, this function converts one currency into another, based on the exchange rate
of each currency with one Euro. The function returns the converted amount rounded to the number of decimal places
specified by the caller. The original amount, the exchange rates and the amount returned are all UNum data types. For
example, to convert $25.00 to Swiss Francs, accurate to 4 decimal places, when the exchange rate for Dollars was $1.1901
for 1 Euro and the exchange rate for Swiss Francs was 1.5864 Swiss Francs for 1 Euro, you would enter
Dim SwissFrancs As UNum(10, 4, “S”)

SwissFrancs = CvtCurrencyToCurrency(25.00, 1.1901, 1.5864, 4)
WriteConStdOut("$25.00 converts to " & SwissFrancs & " Swiss Francs" &
CRLF)

DataManConnect(<hFile>, <String DNS or IP name> ,<Long Type>, <Long Lrl>, <String Value Delimiter>,
<String Record Delimiter>)

Connects a file handle to the Transall Threaded Data Manager (TDM). On successful connection all file IO to this handle
is redirected to the TDM.

DataManConnectDDF(<String DDF Name>, <String DNS or IP name>)

393

Connects a DDF file name to the Transall Threaded Data Manager (TDM). On successful connection all file IO to this DDF
is redirected to the TDM.

<datetime> = Date
Returns the current system date.

<datetime > = DateAdd (<string interval mask expression>,
<double number of intervals expression>, <datetime expression>)

Returns a datetime computed from the passed datetime value with the passed time interval added.

String interval mask Value
yyyy Year.
q Quarter.
m Month.
y Day of year. *
d Day. *
w Weekday. *
ww Week.
h Hour.
n Minute.
s Second.

* = All same interval.

<double> = DateDiff (<string interval mask>, <datetime>, < datetime >)

Appendix A – Statement Syntax

394

Returns a double containing the number of time intervals between the two passed date times.

String interval mask Value
yyyy Year.
q Quarter.
m Month.
y Day of year. *
d Day. *
w Weekday. *
ww Week.
h Hour.
n Minute.
s Second.

= All same interval

variable = DateSerial(year, month, day)

year is an integer value for the year
month is an integer value for the month (1-12)
day is an integer value for the day

DateSerial(1990, 7, 31 + 1) returns the date for August 1,1990
DateSerial(2001, 1, -1) returns the date for December 31, 2000

<integer> = Day (<datetime>)

<access specifier> Declare Function <name> Lib <filename.dll> [Alias "<name>"] ([ByVal] <Parm> As <Data Type>,...) As
<Data Type>

395

Builds a date value, where:

Note that expressions returning integers may be used for the values, and that values outside the accepted range move forward or backward
as appropriate:

Returns the day.

(Global Only) Define external functions in DLLs

Parameter Value
Access Specifier The valid choices are as follows:

• Public—Items are accessible from any method.
• Protected—Items are accessible from member methods and inheriting classes.
• Private—Items are accessible from member methods.

Alias External name of function in DLL. By default, the external and internal name of the
DLL function is identical.

ByVal Indicates the value should be passed by value on the stack rather than by pointer.
Data Type The valid choices are as follows:

• Integer—16-bit signed integer.
• Long—32-bit signed integer.
• Long Long—64-bit signed integer.
• String—BSTR up to 2 GB in length.
• DateTime—Date/Time structure in the form of CCYY/MM/

DD.HH.MI.SS.MMMMMMMMM.
• Float—32-bit (4-byte) floating-point number.
• Double—64-bit (8-byte) floating-point number.
• Any—Disables datatype checking.

<access specifier> Declare Sub <name> Lib <filename.dll> [Alias "<name>"] ([ByVal] <Parm> As <Data Type>,...)

Appendix A – Statement Syntax

396

(Global Only) Define external subroutine in DLLs

Parameter Value
Access Specifier The valid choices are as follows:

• Public—Items are accessible from any method.
• Protected—Items are accessible from member methods and inheriting classes.
• Private—Items are accessible from member methods.

Alias External name of function in DLL. By default, the external and internal name of the
DLL function is identical.

ByVal Indicates the value should be passed by value on the stack rather than by pointer.
Data Type The valid choices are as follows:

• Integer—16-bit signed integer.
• Long—32-bit signed integer.
• Long Long—64-bit signed integer.
• String—BSTR up to 2 GB in length.
• DateTime—Date/Time structure in the form of CCYY/MM/

DD.HH.MI.SS.MMMMMMMMM.
• Float—32-bit (4-byte) floating-point number.
• Double—64-bit (8-byte) floating-point number.
• Any—Disables datatype checking.

<Any> = Decode(<Any ExamineVal>, <Any TestVal1>, <Any ReturnVal1>[, ... <Any Test n>,<Any ReturnValn>][,<Any
DefaultVal]))

Evaluates each test value and returns the corresponding ReturnVal if the test value matches the value to examine. If there is no match, the
default value is returned if one is provided, otherwise a null value is returned.

Define <access specifier> Set <parent table name> <child table name>
<connection option> [Cascading] <sort option>

397

(Global Only) Define a set between tables in the Transit object’s database.

Parameter Value
Access Specifier The valid choices are as follows:

• Public—Items are accessible from any method.
• Protected—Items are accessible from member methods and inheriting classes.
• Private—Items are accessible from member methods.

Connect The valid choices are as follows:
• Automatic—Set is automatically connected as rows are inserted into member

tables. Set can be disconnected.
• Mandatory—Set is automatically connected as rows are inserted into member

tables. Set can NOT be disconnected.
• Optional—Set is not automatically connected as rows are inserted into member

tables. Set can be disconnected.
• Cascading—All child table rows connected to the parent are deleted when the

parent is deleted.
Sort The valid choices are as follows:

• Next—New rows are insert after the current row.
• First—New rows are inserted at the top of the set.
• Last—New rows are inserted at the end of the set.

Appendix A – Statement Syntax

398

Define <access specifier> Table <table name> (<access specifier> <element name>
 As <Data Type> [, <access specifier> <element name> As <Data Type>…])

(Global Only) Define tables in the Transit object’s database.

Parameter Value
Access Specifier The valid choices are as follows:

• Public—Items are accessible from any method.
• Protected—Items are accessible from member methods and inheriting

classes.
• Private—Items are accessible from member methods.

Data Type The valid choices are as follows:
• Integer—16-bit signed integer.
• Long—32-bit signed integer.
• Long Long—64-bit signed integer.
• String—BSTR up to 2 GB in length.
• DateTime—Date/Time structure in the form of CCYY/MM/

DD.HH.MI.SS.MMMMMMMMM.
• Float—32-bit (4-byte) floating-point number.
• Double—64-bit (8-byte) floating-point number.
• PNum(dig left[, dig right[, “S” or ”U”]])—Packed zoned-decimal field.
• UNum(dig left[, dig right[, “S” or ”U”]])—Zoned-decimal field.
• <User-defined type>—See Type statement.

DefineEvent <event name>(<Parm> As <Data Type>[, ...])
Defines an event and the number of parameters that it should expect.

DeleteAllRows <Table or Set>
Deletes all rows from a table or a set in the Transall internal database.

DeleteRow <Table Name>
Delete the current row in a table in the Transit object’s database.

DeleteSetting base_key, section [, key]
Removes a value or group of values from the registry. If the "key" value is supplied, only that specific value will be deleted. If not, the entire
section will be deleted. As with GetSetting and SaveSetting, the "base_key" may either be an existing base value, such as:

HKEY_CLASSES_ROOT
HKEY_CURRENT_CONFIG
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS,HKEY_PERFORMANCE_DATA
HKEY_DYN_DATA

or simply a user-defined base. If one of the "HKEY" values is not used, one will be built by appending the user-defined base name to the
following value:
HKEY_CURRENT_USER\Software\Transall Program Settings\....

<Integer> DF$GetFirstRow(<Table Name>)
Sets the current row of a table to the first row under the table's current parent in the Docuflex schema.

<Integer> DF$GetLastRow(<Table Name>)
Sets the current row of a table to the last row under the table's current parent in the Docuflex schema.

<Integer> DF$GetNextRow(<Table Name>)

399

Sets the current row of a table to the next row under the table's current parent in the Docuflex schema.

<String> = DF$GetPathmapValue(<Pathmap string expression>)
This function returns the string value of a pathmap from the Docuflex environment.

<Integer> DF$GetPriorRow(<Table Name>)
Sets the current row of a table to the prior row under the table's current parent in the Docuflex schema.

<Long> DF$GetRowCount(<Table Name>)
Gets the count of table rows under the table's current parent in the Docuflex schema.

<Long> DF$GetRowNumber(<Table Name>)
Gets the row number of the table's current row under the table's current parent in the Docuflex schema.

<String> DF$GetTagValue(<Tag Name String>)
Retrieves a value from the Docuflex tag pool.

<Bool> = DF$GetVirtualFlag()
Returns True if running under ISITAVM host for Docuflex and Docuflex is running in extended virtual memory mode.

<Long Count> = DF$GetVirtualPages()
When running under ISITAVM host for Docuflex and Docuflex is running in extended virtual memory mode returns the number of composed
pages that are retained in memory.

<Integer> DF$IsRowFirst(<Table Name>)
Tests if the table's row currency is the first row under the table's current parent in the Docuflex schema.

<Integer> DF$IsRowLast(<Table Name>)
Tests if the table's row currency is the last row under the table's current parent in the Docuflex schema.

<Integer> DF$IsRowMiddle(<Table Name>)
Tests if the table's row currency is NOT the first or the last row under the table's current parent in the Docuflex schema.

<Integer> DF$IsTableEmpty(<Table Name>)
Tests if the table has any rows under the table's current parent in the Docuflex schema.

<Long> DF$SetCurrentRow(<Table Name>, <Row Number Long>)
Sets the current row number of a table under the table's current parent in the Docuflex schema.

<String> DF$SetTagValue(<Tag Name String>, <Tag Value String>)
Sets a value in the Docuflex tag pool.

<Bool> = DF$SetVirtualFlag(<Bool VirtFlag>)
Sets indicator to Docuflex that it should be running in either True, extended virtual memory mode, or False, not in extended virtual memory
mode, and returns value that this flag was set to before the call to this function.

<Long Count> = DF$SetVirtualPages(<Long VirtPages>) As Long
When running under ISITAVM host for Docuflex and Docuflex is running in extended virtual memory mode sets the number of composed pages
that are retained in memory, and returns setting that existed prior to this call.

<Bool> DF$SortTable(<Table.Col Name>[, <Descending Bool>])
Sorts the rows of a table under the table's current parent in the Docuflex schema.

DF$Walk <Table> [<Long start at expression>]
Repeats a block of statements once for each row in a Docuflex schema database table.

Dim <varname> As <Data type>
Defining local variables:

Appendix A – Statement Syntax

400

Parameter Value
Data Type The valid choices are as follows:

• Integer—16-bit signed integer.
• Long—32-bit signed integer.
• Long Long—64-bit signed integer.
• String—BSTR up to 2 GB in length.
• String * <string length>—BSTR up to 2 GB in length.
• DateTime—Date/Time structure in the form of CCYY/MM/

DD.HH.MI.SS.MMMMMMMMM.
• Float—32-bit (4-byte) floating-point number.
• Double—64-bit (8-byte) floating-point number.
• PNum(dig left[, dig right[, “S” or ”U”]])—Packed zoned-decimal field.
• UNum(dig left[, dig right[, “S” or ”U”]])—Zoned-decimal field.
• <User-defined type>—See Type statement.
• Any—Variant datatype.

Global variables are defined outside the scope of any function (traditionally before the first function or subroutine is defined) and are visible to
every function or subroutine within the program:
Dim visible As Integer
 *
 *
 *
 Public Sub Run()
 visible = 1
 Call showVis()
 End Sub

 Public Sub showVis()
 WriteConStdOut("Visible = " & visible & _CRLF_)
 End Sub

<string name of a file or directory> = Dir$ [(<filespecString>[,attrmask])]
Returns name of a file or directory that matches a specified pattern and file attribute. Also can return a volume label.

<DmgObject Level> = DmgCabOpenLevel(<DmgObject Cabinet>, <Long Level>)
Open the particular level of Cabinet.

<Long ErrCode> = DmgDocAddRendition(<DmgObject Doc>, <DmgObject Doc2>)
Add Doc and Doc2 to the same rendition set. Doc should not be checked out.

<Long ErrCode> = DmgDocCheckIn(<DmgObject Doc>, <String VersionComment>, <Long CheckInType>)
Check in Doc's changes. CheckInType should be one of DmgDocCheckIn constants.

<Long> = DmgDocCheckInMajor
Constant for DmgDocCheckIn. Check in as major document version.

<Long> = DmgDocCheckInMinor
Constant for DmgDocCheckIn. Check in as minor document version.

<Long> = DmgDocCheckInSame
Constant for DmgDocCheckIn. Check in as same document version.

<DmgObject CheckedOutDoc> = DmgDocCheckOut(<DmgObject Doc>, <DmgObject DestFolder>, <DateTime DueDate>,
<String CheckOutReason>)

Check out Doc for modification.

401

<Long ErrCode> = DmgDocDelRendition(<DmgObject Doc>)
Remove Doc from its current rendition set. Doc should not be checked out.

<Long ErrCode> = DmgDocGetAppProps(<DmgObject Doc>, <String SubCategory Return>, <String Status Return>,
<DateTime Date Return>, <String RenditionKey Return>)

Get Doc's application properties.
<Long ErrCode> = DmgDocGetCheckOutProps(<DmgObject Doc>, <Long IsCheckedOutHandle Return>, <String AltCab
Return>, <Long AltID Return>, <String CheckedOutBy Return>, <String CheckedOutDesc Return>, <DateTime DueDate
Return>)

Get Doc's check out properties.
<Long ErrCode> = DmgDocGetCMProps(<DmgObject Doc>, <Long Approved Return>, <Long Released Return>, <Long
Obsolete Return>)

Get Doc's content management state.
<Long ErrCode> = DmgDocGetFile(<DmgObject Doc>, <String DiskFileName>)

Download Doc to local file DiskFileName
<Long ErrCode> = DmgDocGetGenProps(<DmgObject Doc>, <String Label Return>, <String Type Return>, <String Category
Return>, <String Description Return>, <String Author Return>)

Get Doc's general properties.
<Long ErrCode> = DmgDocGetSpecifier(<DmgObject Doc>, <Long DocID Return>, <Long MajorVer Return>, <Long MinorVer
Return>)

Get Doc's properties that form its document specifier.
<Long ErrCode> = DmgDocGetUserProps(<DmgObject Doc>, <String Keyword1 Return>, <String Keyword2 Return>, <String
DocFlag1 Return>, <String DocFlag2 Return>)

Get user-definable properties.
<Long ErrCode> = DmgDocInitialCheckIn(<DmgObject Doc>, <String FileName>)

Check in new Doc. FileName's content's will be uploaded and saved.
<DmgObject Cabinet> = DmgDocOpenRendition(<DmgObject Session>, <DmgObject Doc>, <String RenditionKey>,
<DmgObject RenditionDoc Return>)

Open RenditionDoc who has RenditonKey and is in Doc's rendition set.
<Long ErrCode> = DmgDocSetAppProps(<DmgObject Doc>, <String Subcategory>, <String Status>, <DateTime Date>,
<String RenditionKey>)

Set application properties. Doc should be checked out.
<Long ErrCode> = DmgDocSetCMProps(<DmgObject Doc>, <Long Approved>, <Long Released>, <Long Obsolete>)

Set content management state. Set state to True, False, or -1 for don't-change. Doc should not be checked out.
<Long ErrCode> = DmgDocSetFile(<DmgObject Doc>, <String DiskFileName>)

Upload DiskFileName's contents to Doc. Doc should be checked out.

<Long ErrCode> = DmgDocSetGenProps(<DmgObject Doc>, <String Label>, <String Type>, <String Category>, <String
Description>, <String Author>)

Set Doc's general properties. Doc should be checked out.

<Long ErrCode> = DmgDocSetUserProps(<DmgObject Doc>, <String Keyword1>, <String Keyword2>, <String DocFlag1>,
<String DocFlag2>)

Set user-definable properties. Doc should be checked out.
<Long ErrCode> = DmgDocUndoCheckOut(<DmgObject Doc>)

Check in Doc without saving changes.
<DmgObject Doc> = DmgFoldCreateDoc(<DmgObject Folder>)

Appendix A – Statement Syntax

402

Create new doc in folder. Doc is considered checked out. Use DmgDocInitialCheckIn to save document.

<Long ErrCode> = DmgFoldSave(<DmgObject Folder>)
Save changes to a new folder.

<Long ErrCode> = DmgGetError(<String Message Return>)
Get the last error code and error message. Error code is 0 when there was no error.

<DmgObject Folder> = DmgItemCreateFolder(<DmgObject Item>)
Create new folder as a child of Item. You will need to set properties and use DmgFoldSave.

<DmgObject Project> = DmgItemCreateProject(<DmgObject Item>)
Create new project as a child of Item. You will need to set properties and use DmgFoldSave.

<Long ErrCode> = DmgItemDelete(<DmgObject Item>)
Permanently delete Item. If a doc, all of its versions are deleted. If a folder, it should have no children.

<DmgObject ChildItem> = DmgItemGetFirstChild(<DmgObject Item>, <Long ItemType Return>, <String Label Return>)
Get the first child of Item along with its label and type. ItemType will be one of DmgObjType constants.

<DmgObject NextItem> = DmgItemGetNextSibling(<DmgObject Item>, <Long ItemType Return>, <String Label Return>)
Get the next sibling of Item along with its lable and type. ItemType will be one of DmgObjType constants.

<Long> = DmgListCategoryStatus
Constant for DmgObjOpenList. Statuses available for category.

<Long> = DmgListCategorySubcategory
Constant for DmgObjOpenList. Subcategories available for category.

<Long> = DmgListCategoryUserFlag1
Constant for DmgObjOpenList. Possible values for UserFlag1 for category.

<Long> = DmgListCategoryUserFlag2
Constant for DmgObjOpenList. Possible values for UserFlag2 for category.

<Long> = DmgListDocRendition
Constant for DmgObjOpenList. Rendition key for each document in the same rendition set as the document.

<Long> = DmgListDocVersion
Constant for DmgObjOpenList. Major.Minor pairs for each version of the document.

<Long Count> = DmgListGetCount(<DmgObject List>)
Get the number of items in the list.

<String Item> = DmgListGetItem(<DmgObject List>, <Long Index>)
Get the Index'th item from List. Index is zero-based.

<Long> = DmgListHandleExtProp
Constant for DmgObjOpenList. Extended properties for object.

<Long> = DmgListHandleProp
Constant for DmgObjOpenList. Normal properties for object.

<Long> = DmgListProjectBranch
Constant for DmgObjOpenList. Project's possible branch names.

<Long> = DmgListProjectTeamMember
Constant for DmgObjOpenList. Members in the team that can advance project.

<Long> = DmgListSessionCabinet

403

Constant for DmgObjOpenList. Cabinets available in session.

<Long> = DmgListSessionCategory
Constant for DmgObjOpenList. Categories available in session.

<Long> = DmgListSessionWorkflow
Constant for DmgObjOpenList. Workflows available in session.

<Long ErrCode> = DmgObjClose(<DmgObject Object Return>)
Frees resources associated with an Object. Every 'Open' call needs a close.

<Long Handle> = DmgObjGetHandle(<DmgObject Object>)
Get the dmg_api handle for Object. Used when Transall's API is insufficient.
Use of this function should be rare. It is intended to provide the ability to create temporary workarounds. General use of this function should be
considered unsupported.

<DmgObject Prop> = DmgObjGetProp(<DmgObject Object>, <Long PropType>, <String PropName>)
Get named property. PropType should be one of DmgPropType constants.

<DmgObject List> = DmgObjOpenList(<DmgObject Obj>, <Long Type>)
Open a list. See DmgList constants.

<Long> = DmgObjTypeDocument
Constant for DmgItemGetFirstChild & DmgItemGetNextSibling. Item is a document.

<Long> = DmgObjTypeFolder
Constant for DmgItemGetFirstChild & DmgItemGetNextSibling. Item is a folder.

<Long> = DmgObjTypeProject
Constant for DmgItemGetFirstChild & DmgItemGetNextSibling. Item is a project.

<Long> = DmgProjAll
Constant for DmgSessOpenProjects. All pending and suspended projects.

<Long ErrCode> = DmgProjCheckIn(<DmgObject Project>[, <String BranchName>])
Check in Project. If BranchName is specified, it will advance Project.
If there is only a single branch and BranchName is specified, then the actual value of BranchName is ignored and the project is advanced down
the only path.

<Long ErrCode> = DmgProjCheckOut(<DmgObject Project>)
Check out a project for modification and advancement.

<Long ErrCode> = DmgProjForward(<DmgObject Project>, <String Username>)
Forward check out ownership of project to team member. Project should be checked out.

<Long> = DmgProjPending
Constant for DmgSessOpenProjects. Pending projects.

<Long> = DmgProjPending
Constant for DmgSessOpenProjects. Suspended projects.

<Long> = DmgProjPending
Constant for DmgSessOpenProjects. Suspended projects.

<Long ErrCode> = DmgProjResume(<DmgObject Project>)
Resume suspended project.

<Long ErrCode> = DmgProjSuspend(<DmgObject Project>, <String Comment>, <DateTime TillDate>)
Suspend project until resume or TillDate.

Appendix A – Statement Syntax

404

<String Value> = DmgPropGetQualifiedName(<DmgObject Prop>)
Get the qualified name of a property. Useful for DmgSessPerformQuery.

<String Value> = DmgPropGetValue(<DmgObject Prop>)
Get the value of property.

<Long> = DmgPropTypeBasic
Constant for DmgObjGetProp. Basic property.

<Long> = DmgPropTypeExt
Constant for DmgObjGetProp. Extended property.

<Long ErrCode> = DmgPropSetValue(<DmgObject Prop>, <String Value>)
Set the value of property.

<TaskID Long> = DmgSessGetTaskID(<DmgObject Session>, <String Workflow>, <String TaskDesc>)
Lookup the task id for task. Returns 0 if not found or no projects are in task.

<DmgObject Session> = DmgSessOpen(<String Profile>)
Open a session using Profile. This connects to a Documanage server.

<DmgObject Cabinet> = DmgSessOpenCabinet(<DmgObject Session>, <String CabinetName>)
Open cabinet. DmgItem functions are not useful on returned cabinet.

<DmgObject Category> = DmgSessOpenCategory(<DmgObject Session>, <String CategoryName>)
Open category.

<DmgObject Cabinet> = DmgSessOpenDoc(<DmgObject Session>, <String CabinetName>, <Long DocID>, <Long MajorVer>,
<Long MinorVer>, <DmgObject Doc Return>)

Open the document with document specifier. This is the fasted way to open a document from a previous session.
Use -1 for the major and/or minor version numbers for the latest version of that type.

<DmgObject Cabinet> = DmgSessOpenProjects(<DmgObject Session>, <String Workflow>, <Long TaskID>, <Long State>)
Open the projects in task. See DmgProj constants for State.
Use DmgClose on Cabinet

<DmgObject Cabinet> = DmgSessPerformQuery(<DmgObject Session>, <String CabinetName>, <String FolderFilter>,
<String DocFilter>, <String DocCategory>, <String DocPropFilter>)

Perform a query. Use DmgItemGetFirstChild and DmgItemGetNextChild to iterate results.
Use DmgClose on Cabinet.

Do
<statements...>
Loop [While(<expr>)]
Allows you to code a looping construct which (optionally) tests for the looping condition each time, at the end of the sequence of code in the loop.

Do Walk <Table name> or <Set name>
<statements...>
Loop
Loop processing once for each table row in a table or set in the Transit object’s database.

Do While {<condition>}
<statements...>
Loop
Loop processing while condition is “True”.

<Long resultcode> = DSIAddAttachVar(<long queue flag>, <String Variable Name>, <String Return>)

405

Sets a value in the Oracle Internet Document Server (IDS) environment. Note, the queue flag should be set to either
TrnSys$DSI_INPUTQUEUE or TrnSys$DSI_OUTPUTQUEUE)

<Long resultcode> = DSILocateAttachVar(<long queue flag>, <String Variable Name>, <String Return>)
Retrieves a value from the Oracle Internet Document Server (IDS) environment. Note, the queue flag should be set to either
TrnSys$DSI_INPUTQUEUE or TrnSys$DSI_OUTPUTQUEUE)

<any> = DynmGetTableValue(<string table name>, <string column name>)
Returns a value from a Transall database table dynamically.

End Function
Ends a Transall Function script.

End SendEvent
Indicates that an event should be handled by whatever routine was handling it prior to when the corresponding "SendEvent" statement was
issued. This allows you to handle specific events differently in different situations, or only during the course of certain routines.

Enum <name>
<enum_name> = <value>
 *
 *
 *
End Enum
Allows you to assign names to integer values and assign a datatype name to the collection of values.
Enum Dwarf
 Sneezy = 1
 Dopey = 2
 Grumpy = 3
 Sleepy = 4
 Bashful = 5
 Doc = 6
 Happy = 7
End Enum
 *
 *
 *

Public Sub example()
 Dim Actor1 As Dwarf

 Actor1 = Bashful

<any> = Environ(<string environment variable>)
Returns the value of the passed environment variable.

<string> = Environ$(<string environment variable>)
Returns the value of the passed environment variable.

<long> = Err
Error code from last instruction (usually 0 or 1001).

<string> = Err.Description
Error message from last instruction.

Error [<Message String>,] [<Number>]

Appendix A – Statement Syntax

406

Examples:
Error 1234—terminates process with a 1234 reported error message, returns 1001 as error result (see “TerminateApp” to kill
processing with a return value).
Error “Stopped processing because database is down.”—terminates process with a string
reported error message, returns 1001 as error result.
Error “Stopped processing because database is down.”, 1234—terminates process
with a string reported error message, returns 1234 as error result from processing.

<boolean integer> = Even(<Any>)
Returns non-zero if the expression equates to an Even number.

Exit Do
Unconditional break out of loop processing.

Exit Function
Unconditional method exit.

Exit Sub
Unconditional method exit.

<numeric value> = Exp (<numeric expression >)

Returns e (the base of natural logarithms) raised to a power.

<boolean integer> = FileBitsAreAscii (<lFileHandle as Long>)
Causes Transall to read and write a file using a binary coding scheme of ASCII.

<boolean integer> = FileBitsAreDefault (<lFileHandle as Long>)

Causes Transall to read and write a file using the default binary coding scheme of the operating environment in which Transall is executing.
<boolean integer> = FileBitsAreEbcdic (<lFileHandle as Long>)

Causes Transall to read and write a file using a binary coding scheme of EBCDIC.
FileConcat <string expression source>, <string expression destination>

Concatenates the contents of one file to another.
FileCopy <string expression source>, <string expression target>

Copies the contents of a file.

<boolean integer> = FileValuesAreBigEndian (<lFileHandle as Long>)

Causes Transall to read and write binary values to a file ordering the bytes of binary value fields as Big Endian (big end in).
<boolean integer> = FileValuesAreDefaultEndian (<lFileHandle as Long>)

Causes Transall to read and write binary values to a file ordering the bytes of binary value fields in the default order of the operating environment
in which Transall is executing.

<boolean integer> = FileValuesAreLittleEndian (<lFileHandle as Long>)
Causes Transall to read and write binary values to a file ordering the bytes of binary value fields as Little Endian (little end in).

<boolean integer> = FindRowSet (<set>, <table.col>,<value>[,<boolean start top>)
Returns non-zero value found and table currency changed.

<boolean integer> = FindRowTbl (<table.col>,<value>[,<boolean start top>)
Returns non-zero value found and table currency changed.

<numeric value> = Fix (<numeric expression >)
Returns the integer portion of a number. If the number is negative, Int returns the first negative integer greater than or equal to number.

407

For <counter> = <start> To <end> [Step <increment>]
 *
 *
 *
Next [counter]
Executes all code between the "For" statement and the "Next" statement and then increments the "<counter>" variable by "<increment>".
Control then continues back to the top of the loop and this continues until the value of the counter variable exceeds "<end>". If no step value
is supplied, a value of 1 is assumed. The increment value may be positive or negative. If a negative value is used, the value of "<start>" should
be larger than "<end>".

For Counter = 1 To 5
 WriteConStdOut(" " & Counter & _CRLF_)
 Next Counter

produces:
1
2
3
4
5

while

For Counter = 5 To 1 Step -1
 WriteConStdOut(" " & Counter & _CRLF_)
 Next Counter

produces:
5
4
3
2
1

In addition, For…Next loops may be nested, as long as all inner loops are completed before closing the outer loops.

Dim Row As Integer
 Dim Col As Integer

 For Row = 1 To 5
 WriteConStdOut(" " & Row & ".) ")
 For Col = 0 To 4
 WriteConStdOut(Chr$(Col + Asc("A")) & " ")
 Next Col
 WriteConStdOut(_CRLF_)
 Next Row

produces:
1.) A B C D E
2.) A B C D E
3.) A B C D E
4.) A B C D E
5.) A B C D E

<string> = Format$ (<string expression> [,<string expression format mask>])
Returns a string formatted according to symbols contained in a format mask.

<Long> Fp$PageDotCount <DOT Position>

Appendix A – Statement Syntax

408

Returns the current DOT position in an FpPlus data destination's logic tree.

<Long> Fp$PageNumber <Page Number>
Returns the current page number in an FpPlus data destination's logic tree.

<Long Fp$SectionPageNumber <Page Number>
Returns the current section page number in an FpPlus data destination's logic tree.

<Long> Fp$TotalPages <Page Count>
Returns the total number of pages in an FpPlus data destination's logic tree.

<Long> Fp$TotalSectionPages <Page Count>
Returns a section's total number of pages in an FpPlus data destination's logic tree.

<Long> FpPlusGetRfrmtHandle(<FpPlus Handle>)
Retrieves the internal handle to the VRF reformatter so Vdr* functions can be used against an FpPlus data destination.

<next available file number> = FreeFile ()
Returns the next file number available for use with the Open statement.

<Access Specifier> Function <name> ([[Optional] [ByVal|ByRef] <Parm> As <Data Type>,... [= <default>]]) As <Data Type>
<statements...>
End Function

Parameter Value
Access Specifier The valid choices are as follows:

• Public—Items are accessible from any method.
• Protected—Items are accessible from member methods and inheriting

classes.
• Private—Items are accessible from member methods.

Optional Preface the parameter definition with the keyword "Optional" and supply a
default value to the parameter(s).

ByVal Indicates the value should be passed by a copy value on the stack rather
than by a pointer back to the original value.

ByRef *default * Indicates the value should be passed by a reference pointer back to the
original value rather than by a copy value on the stack.

Data Type The valid choices are as follows:
• Integer—16-bit signed integer.
• Long—32-bit signed integer.
• Long Long—64-bit signed integer.
• String—BSTR up to 2 GB in length.
• DateTime—Date/Time structure in the form of CCYY/MM/

DD.HH.MI.SS.MMMMMMMMM.
• Float—32-bit (4-byte) floating-point number.
• Double—64-bit (8-byte) floating-point number.
• PNum(dig left[, dig right[, “S” or ”U”]])—Packed zoned-decimal field.
• UNum(dig left[, dig right[, “S” or ”U”]])—Zoned-decimal field.
• Any—Variant datatype.

= <default> Preface the parameter definition with the keyword "Optional" and supply a
default value to the parameter(s).

Using optional default values:

Set A = GetObject(Null,
"MyProject.TransObject")
Set A = GetObject("",
"MyProject.TransObject")

409

Public Function Sum3(Optional ByVal First As Long = 0, _
 Optional ByVal Second As Long = 0, _
 Optional ByVal Third As Long = 0) As Long
 Sum3 = First + Second + Third
End Function
 •
 •
 •
Dim lExeRes As Long

lExeRes = Sum3()
 WriteConStdOut("The sum of nothing is " & lExeRes & _CRLF_)
lExeRes = Sum3(1)
 WriteConStdOut("The sum of 1 is " & lExeRes & _CRLF_)
lExeRes = Sum3(1,2)
 WriteConStdOut("The sum of 1 and 2 is " & lExeRes & _CRLF_)
lExeRes = Sum3(1,2,3)
 WriteConStdOut("The sum of 1 and 2 and 3 is " & lExeRes & _CRLF_)

When run, this would produce:
The sum of nothing is 0
The sum of 1 is 1
The sum of 1 and 2 is 3
The sum of 1 and 2 and 3 is 6
Note that once an optional parameter is defined, all subsequent parameters must be defined with default values as well.

<double sum value> = GetColSumSet(<Column Name>, <Set Name>)
Computes the sum of the values for a field from all rows in a Transall set.

<double sum value> = GetColSumTbl(<Column Name>)
Computes the sum of the values for a field from all rows in a Transall table.

<String> = GetExtEnvString(<String Variable Name>)
Retrieves a value from the external environment. Works consistently under all Transall execution modes.

Set objectvariable = GetObject([pathname] [, progID])
The pathname argument can be the path to an existing file, an empty string, or Null. If it is Null, then progID is required. Specifying the path to
an existing file causes GetObject to create an object using the information stored in the file. Using an empty string for the first argument causes
GetObject to act like CreateObject - it will create a new object of the class whose programmatic identifier is progID. The following table describes
the results of using GetObject:

If the ActiveX application is loaded

Result

Set A = GetObject(Null,
"MyProject.TransObject")

An existing TransObject reference is assigned to A.

Set A = GetObject("",
"MyProject.TransObject")

The ActiveX application (MyProject) is started and its reference is
assigned to A.

If the ActiveX application is not
loaded

Result
An error occurs.

The ActiveX application (MyProject) is started and its reference is
assigned to A.

Appendix A – Statement Syntax

410

GetRow Set< First/Last/Prior/Next> In <Set Name>
Set currency pointer for a child table in a set in the Transit object’s database by walking the set.

GetRow Table< First/Last/Prior/Next> <Table Name>
Set currency pointer for a table in the Transit object’s database by walking the physical table.

<long row count> = GetRowCountSet(<Set Name>)
Returns the count of rows in a Transall set.

<long row count> = GetRowCountTbl(<Table Name>)
Returns the count of rows in a Transall table.

<long row count> = GetRowNumberSet(<Set Name>)
Returns the number of the current row in a Transall set counting from the beginning of the set.

<long row count> = GetRowNumberTbl(<Table Name>)
Returns the number of the current row in a Transall table counting from the beginning of the table.

GetSetting(base_key, section, key [, value])
Reads a value from the registry key formed by joining the "base_key", "section", and "key" values together. The "base_key" may either be an
existing base value or simply a user-defined base. If one of the "HKEY" values is not used, one will be built by appending the user-defined base
name to the value
HKEY_CURRENT_USER\Software\Transall Program Settings\....
Note that, optionally, a default value may be provided to be returned if no value exists for the specified key. If no default is provided, a Null
string is returned for undefined keys. Like the similarly-named Visual Basic function, this function only returns string values.
For example, to returm to the current version of the Transall Editor:
GetSetting(“HHKEY_LOCAL_MACHINE”,”SOFTWARE\Oracle Internaltional\Transall 12.1”,”LastInstallVersion”,”none”)

<any> = GetVal (<string>)
Converts a string number with punctuation to a variant number without punctuation.

GoTo <label>
Branch to a line label within a procedure.

411

GoSub label
Causes the program execution to switch to the named label. When a Return statement is encountered (see below), program execution will
return to the line following the GoSub statement. GoSub calls may be nested:
Dim Count As Integer

 Count = 10
 GoSub Countdown
 WriteConStdOut("BLASTOFF!!" & _CRLF_)
 GoTo TheFinalFrontier

 Countdown:
 If (Count > 0) Then
 WriteConStdOut(" " & Count & _CRLF_)
 Count = Count - 1
 GoSub Countdown
 End If

 Return

 TheFinalFrontier:
 WriteConStdOut("That was cool!" & _CRLF_)

produces:
10
9
8
7
6
5
4
3
2
1
BLASTOFF!!
That was cool!

<String> = Hex$(<Long>)
Returns a string that represents the hexadecimal value of a decimal argument

<integer> = Hour (<datetime>)
Returns the hour.

<String> = IDS_Get(<String Variable Name>)
Retrieves a value from the Oracle Internet Document Server (IDS) input queue environment.

IDS_Put(<String Variable Name>, <String Value>)
Sets a value in the Oracle Internet Document Server (IDS) output queue environment.

IidGUID {<GUID>}
(Global Only) Define the “root” Interface Global Unique ID (GUID) for the Transit class ActiveX object.

InsertRow <Table Name> (<Column> [,<Column>...]) Values (<constant>
[,< constant>…])

(Global Only) Insert a row at compile time into a table in the Transit object’s database.
InsertRow <Table Name> [([<Column>,<Column>...]) Values ([<expression>,<expression>…])]

Insert a row into a table in the Transit object’s database

Appendix A – Statement Syntax

412

<long> = Instr(<numeric expression start>,<string expression to search>,
<string expression looking for>, [<boolean case insensitive>])

Returns the index offset of a substring inside a larger string (the first character has an index of one)
<Long> InstrRev(<StringCheck>, <StringMatch>[, <Integer start>
[, <Bool case in-sensitive>]])

Returns the position of an occurrence of the StringMatch string within the StringCheck string, looking from the end of the StringMatch string.
<numeric value> = Int (<numeric expression >)

Returns the integer portion of a number. If the number is negative, Int returns the first negative integer less than or equal to number.
<boolean integer> = IsDate(<Any>)

Returns non-zero if the expression is a valid date time.
<boolean integer> = IsNumeric(<Any>)

Returns non-zero if the expression is a number or can be processed as a number.
<boolean integer> = IsNull (<expression >)

Returns non-zero if expression evaluates to null.
<boolean integer> = IsNull(<Any>)

Returns non-zero if the expression is Null.
<boolean integer> = IsSetCurrent(<set>)

Returns non-zero if the set has a current row.
<boolean integer> = IsSetEmpty (<set>)

Returns non-zero if the set is empty.
<boolean integer> = IsTableCurrent (<table>)

Returns non-zero if the table has a current row.
<boolean integer> = IsTableEmpty (<table>)

Returns non-zero if the table is empty.
<String> = Join(<array>[, <separator string>])

Accepts an array, and optionally a String value. If no string value is provided, it defaults to a space (" "). The function builds a string,
concatenating the elements of the array and separating them with the String value provided, and returns the newly-built String value. Note that
if an empty string value is specified for the separator (""), then the elements of the array are concatenated with no intervening characters.

Jump [Case] <testexpression>
[Case <Constant-1>

[statementblock-1]]
[Case <Constant-2>

[statementblock-2]]
[Case Like <String Constant-3>

[statementblock-3]]
[Case Like <String Constant-4>

[statementblock-4]]
[Case Else

[statementblock-n]]
End Jump

The Jump Case statement functions like the Visual Basic “Select Case” statement, but requires constants for the Case
statement blocks and also supports a “Like” operator on the Case statements. The expressions following Case
statements under a Jump statement must be constant data references. Jump statements will tend to execute faster than
Select Case statements when the number of Case blocks is greater than four.

Kill <String Expression File Name>

413

Deletes a file.

<string> = LCase$(<string expression>)
Returns a string with all letters converted to lowercase.

<string> = Left$(<string expression>, <numeric expression start>)
Returns characters from left side of a string.

<length of string> = Len (<string expression>)
Returns the number of characters in a string.

Let <Variable Expression>
Assigns the value of an expression to a variable.

LibGUID {<GUID>}
(Global Only) Define the Type Library Global Unique ID (GUID) for the Transit Class ActiveX object.

<numeric value> = Log (<numeric expression >)
Returns the natural logarithm of a number.

<Return value as any datatype> = LookupValSet (<set name>,
<Lookup In Column Name>,<Search For Value Expression>,
<Return From Column Name>[, <Boolean set lookup row current>])

Looks up an encode value in a Transall set and returns a decode value.
<Return value as any datatype> = LookupValTbl (<Lookup In Column Name>,
<Search For Value Expression>, <Return From Column Name>
[, <Boolean set lookup row current>])

Looks up an encode value in a Transall table and returns a decode value.
<string> = LTrim$(<string expression>)

Returns a string with leading (left most) spaces removed.
<string> = Mid$(<string expression>, <numeric expression start>
[, < numeric expression length>])

Returns characters from middle of a string.

Appendix A – Statement Syntax

414

<long> = Millisecond (<datetime>)
Returns the milliseconds.

<integer> = Minute (<datetime>)
Returns the minute.

MkDir <string path>
Creates a new directory

<integer> = Month (<datetime>)
Returns the month.

Name <oldname> As <newname>
Renames file <oldname> to <newname>. Due to differences in file systems, applications that use this may not be portable.

<datetime> = Now
Returns the current system date time.

<null value> = Null
Equates to Any datatype as a Null value.

Oct(<expression>)
Returns a string representation of the indicated value in octal (base 8). For example, Oct(7) returns "7" and Oct(8) returns "10".

<Database connection handle> = OdbcCommit
(<Database connection handle expression>)

Commits an ODBC database transaction.
<Database connection handle> = OdbcConnect (<expression ODBC data source string>,<expression User ID
string>,<expression password string>)

Establishes connections to an ODBC driver and an ODBC data source.
<Database connection handle> = OdbcConnectCsr (<expression ODBC data source string>,<expression User ID
string>,<expression password string>)

Establishes connections to an ODBC driver and an ODBC data source. If a database connection already exists using the same Data source
string, User ID and Password only a new cursor is defined on the existing database connection.

OdbcDisconnect (<Database connection handle expression>)
Closes the connection associated with a specific ODBC connection handle.

<Database connection handle> = OdbcDriverConnect
(<expression ODBC connection string>)

Establishes connections to an ODBC driver and an ODBC data source.
<Database connection handle> = OdbcDriverConnectCsr
(<expression ODBC connection string>)

Establishes connections to an ODBC driver and an ODBC data source. If a database connection already exists using the same connection
string only a new cursor is defined on the existing database connection.

<Database connection handle> = OdbcDriverConnectPrompt
(<expression ODBC connection string>)

Establishes connections to an ODBC driver and an ODBC data source and will prompt for additional connect information (if necessary).

415

<Database connection handle> = OdbcDriverConnectPromptCsr
(<expression ODBC connection string>)

Establishes connections to an ODBC driver and an ODBC data source and will prompt for additional connect information (if necessary). If a
database connection already exists using the same connection string only a new cursor is defined on the existing database connection.

OdbcExecute (<Database connection handle expression>)
Executes a SQL statement prepared via OdbcPrepare.

OdbcExecuteDirect(<Database connection handle expression >,
<Constant String SQL Statement>)

Prepares and executes a SQL statement directly against an ODBC data connection (usually used to execute stored procedures).
OdbcExecuteDynam(<Database connection handle expression>
 [, Bound Input Variables…])

Executes a SQL statement prepared via OdbcPrepareDynam.
OdbcFetch (<Database connection handle expression>)

Fetches a row of data from a SQL result set created by OdbcExecute or OdbcRun.
<Long varname> = OdbcGetConnectionOptionLong
(<Database connection handle expression>,<Integer Option expression>)

Gets options that govern aspects of ODBC connections. See ODBC Driver doc for values.
<String varname> = OdbcGetConnectionOptionString
(<Database connection handle expression>,<Integer Option expression>)

Gets options that govern aspects of ODBC connections. See ODBC Driver doc for values.
OdbcGetErrorInfo (<Database connection handle expression >,
<Error Message string varname>,<Error State string varname>,<ODBC Error return code integer varname>,<Native data
source error return code long varname>)

Returns ODBC error or status information.
<Long varname> = OdbcGetStmtOptionLong (<Database connection handle expression>,<Integer Option expression>)

Gets options related to an statement on an ODBC connection. See ODBC Driver doc for values.
<String varname> = OdbcGetStmtOptionString (<Database connection handle expression>,<Integer Option expression>)

Gets options related to an statement on an ODBC connection. See ODBC Driver doc for values.
<Long varname> = OdbcGetSqlRowCount (<Database connection handle expression>)

Gets the number of rows affected by the last UPDATE, INSERT, or DELETE statement run on
an ODBC connection.

OdbcMoreResults(<Database Handle>[,<Variable>...>])
Tests for and binds data buffers to secondary result-sets returned by SQL stored procedures.

OdbcPrepare (<Database connection handle expression >,
<Constant String SQL Statement>)

Prepares a SQL string for ODBC execution.
OdbcPrepareDynam(<Database connection handle expression >,
<Variable String SQL Statement>[, Bound Output Variables…])

Prepares a SQL string for ODBC execution.
OdbcRollback (<Database connection handle expression >)

Rolls back an ODBC database transaction.
OdbcRun (<Database connection handle expression >, <Constant String>)

Prepares and Executes a SQL string via ODBC.

Appendix A – Statement Syntax

416

OdbcSetConOptAutoCommit (<Database connection handle expression>,
<Boolean expression>)

Sets transaction auto commit option on or off. The default is determined by the ODBC driver but is usually on.
OdbcSetConOptIsoReadCommited (<Database connection handle expression>)

Sets the transaction’s record locking isolation level to READ COMMITTED for a database connection. This causes the server to acquire a
shared lock while reading a row into a cursor and free the lock immediately after reading the row. Because a shared lock request is blocked
by an exclusive lock, the cursor should be prevented from reading a row that another task has updated but not yet committed.

OdbcSetConOptIsoReadRepeatable (<Database connection handle expression>)
Sets the transaction’s record locking isolation level to REPEATABLE READ for a database connection. This causes the server to acquire a
shared lock while reading a row into a cursor and to hold the lock for the life of the SQL transaction. This works the same as
OdbcSetConOptIsoReadRepeatable.

OdbcSetConOptIsoReadUncommited (<Database connection handle expression>)
Sets the transaction’s record locking isolation level to READ UNCOMMITTED for a database connection. This causes the server to request no
locks while reading rows into a cursor. This means that cursors can be populated with values that have been updated but not yet committed
thereby bypassing all of locking transaction control mechanisms on the SQL server.

OdbcSetConOptIsoSerializable (<Database connection handle expression>)
Sets the transaction’s record locking isolation level to REPEATABLE READ for a database connection. This causes the server to acquire a
shared lock while reading a row into a cursor and to hold the lock for the life of the SQL transaction. This works the same as
OdbcSetConOptIsoSerializable.

OdbcSetConOptIsoSerializable(<Database Handle>)
Sets the record locking isolation level to SQL_TXN_SERIALIZABLE for a database connection.

OdbcSetConOptReadOnly (<Database connection handle expression>,
<Boolean expression>)

Sets the access mode option to read only or to read write. The default is determined by the ODBC driver but is usually read write.
OdbcSetConOptTrace (<Database connection handle expression>,
<Boolean expression>)

Sets statement tracing option on or off. The default is determined by the ODBC driver but is usually off.
OdbcSetConOptTraceFile (<Database connection handle expression>,
<String file name expression>)

Sets statement tracing option on and identifies the name of the file that trace information will be written to. The default file name is determined
by the ODBC driver but it is usually “SQL.LOG”.

OdbcSetConnectionOptionLong (<Database connection handle expression>,
<Integer Option expression>,<Long Value expression>)

Sets options that govern aspects of ODBC connections. See ODBC Driver doc for values.
OdbcSetConnectionOptionString (<Database connection handle expression>,
<Integer Option expression>,<String Value expression>)

Sets options that govern aspects of ODBC connections. See ODBC Driver doc for values.
OdbcSetPrepareOpt <Integer> (<Database Handle>,<Bool>)

Toggles SQL Prepare optimizations for a database connection and returns prior value of switch.
OdbcSetPrepareOptGlobal(<Bool>) <Integer>

Toggles global prepare optimization features and returns prior value of switch.

OdbcSetStmtOptionLong (<Database connection handle expression>,
<Integer Option expression>,<Long Value expression>)

Sets options related to an statement on an ODBC connection. See ODBC Driver doc for values.
OdbcSetStmtOptionString (<Database connection handle expression>,
<Integer Option expression>,<String Value expression>)

417

Sets options related to an statement on an ODBC connection. See ODBC Driver doc for values.

OdbcStatementCloseResult(<Database Handle>)
Closes and releases the result-set of a SQL statement.

OdbcStatementDrop(<Database Handle>)
Drops any compiled statement, closes and releases any result-set on a database handle.

<boolean integer> = Odd(<Any>)
Returns non-zero if the expression equates to an Odd number.

On Error Goto 0
Causes run-time errors to be honored.

On Error GoTo <label>
If an error occurs before the end of the current function or subroutine, control is passed to the designated label.

On Error Resume Next
Causes run-time errors to be ignored.

Open <filename> [For <mode>] [NoCreate] [NoReplace] [Access <access>] [<lock mode>] [AMParms: <AMParm,
AMParm>…] As [#]<filenumber> [Len=<reclength>]

Open a file.

Parameter Value
Mode The valid choices are as follows:

• Append—Opens file for sequential output in text (translated) mode. Sets initial file pointer to end of file. Creates
file if does not exist.

• Binary Append—Opens file for sequential output in binary (un-translated) mode. Sets initial file pointer to end of
file. Creates file if does not exist.

• Output—Opens file for sequential output in text (translated) mode. Sets initial file pointer to beginning of file. File
contents are destroyed. Creates file if does not exist.

• Binary Output—Opens file for sequential output in binary (un-translated) mode. Sets initial file pointer to beginning
of file. File contents are destroyed. Creates file if does not exist.

• Input—Opens file for sequential input in text (translated) mode. Sets initial file pointer to beginning of file.

• Binary Input—Opens file for sequential input in binary (un-translated) mode. Sets initial file pointer to beginning
of file.

• Binary—Opens file for random input and output in binary (un-translated) mode. Sets initial file pointer to beginning
of file. Creates file if does not exist.

• Random—Opens file for random input and output in text (translated) mode. Sets initial file pointer to beginning of
file. Creates file if does not exist.

• VSAM Append Random—Opens VSAM file for random input and output in binary (un-translated) mode. Records
can be retrieved or inserted, but not replaced or deleted. Records can be inserted at any point in the file, not just
at the end. Creates file if does not exist.

• VSAM Append—Opens a VSAM file for random output in binary (un-translated) mode. Records can be inserted,
but not retrieved, replaced, or deleted. Records can be inserted at any point in the file, not just at the end. Creates
file if does not exist.

• VSAM Input—Opens VSAM file for random input in binary (un-translated) mode. Records can be retrieved, but
not replaced, deleted, or inserted. If the file has not been loaded, the open will fail.

• VSAM Random—Opens VSAM file for random input and output in binary (un-translated) mode. All file operations
are permitted. If the file has not been loaded, the open will fail.

Appendix A – Statement Syntax

418

• VSAM Output—Opens VSAM file for output in binary (un-translated) mode. If the file contains any records, they
are erased. If the file is not defined as REUSABLE and it contains any records, the open will fail. This open mode
enables records to be added to the file, but not to be retrieved, updated, or deleted.

• VSAM Output Random—Opens VSAM file for output in binary (un-translated) mode. If the file contains any
records, they are erased. If the file is not defined as REUSABLE and it contains any records, the open will fail. This
open mode enables records to be added to the file, but not to be retrieved, updated, or deleted.

• NoCreate—(Not applicable to VSAM) File must already exist to be opened. Overrides file creation for open modes
Append, Output, Binary and Random.

• NoReplace—(Not applicable to VSAM) File must NOT already exist to be opened. Overrides file content replace
for open modes Append, Output, Binary and Random.

Access (Not applicable to VSAM) The valid choices are as follows:
• Read—File will be left read only if this process created file.
• Write—File will be left write only if this process created file (same as Read Write).
• Read Write—File will be left available for read and write if this process created file.

Lock Mode (Not applicable to VSAM) The valid choices are as follows:
• Shared—File will be available for all access to other process.
• Lock Read—File will be unavailable for reading to other process while open.
• Lock Write—File will be unavailable for writing to other process while open.
• Lock Read Write—File will be unavailable for reading and writing to other process while open.

AMParm (Not applicable to non-mainframe environments) The valid choices are as follows:
• recfm=f/v/u—Operating system record format:

• f—fixed
• v—variable
• u—undefined

• Reclen=nnn|x—Operating system record length.
• blksize=nnn—Operating system block size.
• keylen=nnn—VSAM key offset.
• keyoff=nnn—VSAM key offset.
• org=value—File organization:

• PS—File is an ordinary sequential file, such as a CMS disk file, a tape file, or a CMS spool file. To read
the directory, specify the value PS for a file that is a PDS.

• OS—File is an OS format file under CMS, such as a filemode 4 file or a file on an OS disk.
• PO—File is a partitioned data set, or a CMS MACLIB or TXTLIB. Under systems supporting PDSEs,

the file can be either a regular PDS or a PDSE.
• PDS—File is a regular (non-PDSE) PDS.
• PDSE—File is a PDSE.
• KS—File is a VSAM KSDS.
• ES—File is a VSAM ESDS (limited support).
• BYTE—File is an OpenEdition HFS file.

• print=yes|no—File destined to be printed.
• page=nnn—Line per page with print=yes.
• pad=no|null|blank—File padding.
• trunc=yes|no—Effect of output before end of file.
• grow=yes|no—Controls whether new data can be added to file.
• order=seg|random—Sequential or Random file access.
• bufnd=nnn—Number of Data I/O buffers VSAM is to use.
• bufni=nnn—Number of Index I/O buffers VSAM is to use.
• bufsize=nnn—Maximum number of bytes of storage to be used by VSAM for file data and index I/O buffers.
• Len:nnn—File buffer length. Default is 4096k if value not given or is zero.

Parameter Value

<string header data> = PpsExpReadNextHdr$ (<file number>)

419

Read next header record from a PPS export file formatted with headers.

PpsExpReadVarData #<file number>, <string PPS variable field name>, <varname>[,<string PPS variable field name>,
<varname>...]

Read variable data lines from a PPS export file.

PSSaveAsDCD(hPrintStream, szFilename)
This routine saves the current transaction to a file in DCD format.

Raise GeneralFailure(<text>)
The GeneralFailure event is raised by the Transall runtime engine whenever a runtime error occurs which has not already been handled by an
"On Error" statement.

RaiseEvent <event name>[(<parm>[, ...])]
The "RaiseEvent" statement activates a previously-defined event. Events which are not directed to a handling routine by a "SendEvent" will
simply be ignored.

Randomize
Initializes the random-number generator.

ReadFixed [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to right of
decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of decimal>,
<number places to right of decimal>, <const string sign>, <any data type varname>, …]

Read returns fewer bytes than requested at end of file.
<boolean integer> = ReadPrivateProfileRemove(<string filename>)

Drops Transall's cache of INI data for a single file. Returns True if file was cached.
ReadPrivateProfileRemoveAll()

Drops Transall's cache of INI file data.
<string> = ReadPrivateProfileSection(<string section name>, <string file name>)

Returns all values from a section of an INI formatted file (like WIN32 API GetPrivateProfileSection). Note, INI files are cached.
<long> = ReadPrivateProfileSetCacheSize(<long number of files to cache>)

Sets the number of INI files that Transall will cache. Returns old cache value.
<string> = ReadPrivateProfileString(<string section name>, <string key name>,
<string default value>, <string file name>)

Returns a value from an INI formatted file (like WIN32 API GetPrivateProfileString). Note, INI files are cached.

ReadVariable #<file number>, <record separator>, <element separator>,
<element delimiter>, <varname>, <varname>...

Read delimited records.

Replace$(<String>, <SearchString>, <ReplacementString>)
Returns a copy of a string after replacing search string values with replacement string values.

Resume [0]
When issued inside an error handler, returns control to the line that created the error condition.

Resume Next
When issued inside an error handler, returns control to the line FOLLOWING the one that created the error condition.

Return
Returns control to the line following the GoSub (see above) which called it. Note that attempting to execute a Return statement, which was not
called via a GoSub, will produce a runtime error.

<string> = Right$(<string expression>, <numeric expression start>)
Returns characters from right side of a string.

Appendix A – Statement Syntax

420

RmDir <string path>
Removes an existing directory.

Rnd (<numeric expression seed value>)
Returns a random number.

421

Round(a[, B])
Uses BANKERS rounding to round a to the nearest B decimal places. If not supplied, B defaults to zero. BANKERS rounding is the type of
rounding used by Visual Basic's Round() function. BANKERS rounding always rounds values of .5 to the nearest even integer. For instance
1.5 rounds to 2, but 2.5 also rounds to 2. This rounding is symmetric, in that the sign of a number does not affect the magnitude of the value
that it rounds to. For instance, 2.5 and -2.5 round to 2 and -2, respectively. For more information about this see: http://
support.microsoft.com/support/kb/articles/Q196/6/52.ASP

Round45(a[, B])
Uses 4/5 or arithmetic rounding to round a to the nearest B decimal places. If not supplied, B defaults to zero. Arithmetic is the type of rounding
most commonly taught and used, where anything below .5 rounds down, and values of .5 and above round up in magnitude. With arithmetic
rounding, 1.5 rounds to 2, 2.5 rounds to 3, and 2.4 rounds to 2. This function rounds symmetrically, so that 2.5 and -2.5 round to 3 and -3,
respectively.

Round45A(a[, B])
Uses 4/5 or arithmetic asymmetric rounding to round a to the nearest B decimal places. If not supplied, B defaults to zero. This function behaves
in a manner similar to the Round45() function, except that this function includes the sign of the number when deciding whether to round up or
down. As with the Round45() function 1.5 rounds to 2, 2.5 rounds to 3, and 2.4 rounds to 2. For negative values, however, -2.4 rounds to -2
and -2.5 also rounds to -2, respectively.

<string> = RTrim$(<string expression>)
Returns a string with trailing (right most) spaces removed.

SaveSetting base_key, section, key, value
Saves a string value to the registry key formed by joining the "base_key", "section", and "key" values together. The "base_key" may either be
an existing base value, such as:

HKEY_CLASSES_ROOT
HKEY_CURRENT_CONFIG
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS,HKEY_PERFORMANCE_DATA
HKEY_DYN_DATA

or simply a user-defined base. If one of the "HKEY" values is not used, one will be built by appending the user-defined base name to the
following value:
HKEY_CURRENT_USER\Software\Transall Program Settings\....

<integer> = Second (<datetime>)
Returns the second.

Seek [#]<filenumber>, <position>
Determines the read/write position of a file.

<current read/write location offset> = Seek (<numeric expression file>)
Returns the read/write position of a file.

Appendix A – Statement Syntax

422

SendEvent <event name> To <handler routine name>
The "SendEvent" statement is used to direct an event to a particular subroutine which will handle the event. An event must be defined before
it may be used.
"SendEvent" statements may be nested, allowing you to handle an event differently depending upon other conditions within your program.
Before control is passed to a handler routine by a "RaiseEvent" statement, the handler for the event is set to the previous event handler. Upon
return from the routine, the event handler is restored. For instance if event "GeneralFailure" is currently being directed to routine "A", and prior
to that it was handled by Transall, and a "GeneralFailure" exception is raised, before passing control to routine "A", Transall will reset the
"GeneralFailure" event back to what was handling it before (Transall in this case). Once routine "A" has returned, Transall will restore routine
"A" as the handler for a "GeneralFailure" event. The reason for this is twofold. First, it allows the user-defined event handler to pass control to
the system-defined event handler, if necessary. Second, it helps to prevent infinite looping situations from occurring in cases where your event
handling routine generates (perhaps inadvertently) the event that it is handling, such as a "GeneralFailure" event.
Events may be defined to have optional parameters. Note that if optional values are specified by a handler routine, they are ignored. The only
place that optional values may be specified for an event is in the event definition itself. (This is because it is impossible for the compiler to know
which event handler might be active at runtime.)

SendEvent GeneralFailure To <handler routine name>
The event handler for a GeneralFailure event is passed one parameter, a String which contains the error message for the error.
If you raise a GeneralFailure event within your program that is not processed by an event handler, the program will display the message passed
to it, and exit. If you pass no parameter to the event, the default parameter of the last error message is used.

SetAttr <filename>, <attribute>
Changes the file system attributes for the indicate file. The attribute may be a hard coded value or a sum of one or more of the following
constants:

TRAN_UNIX_SUID
TRAN_UNIX_SGID
TRAN_UNIX_RWXU
TRAN_UNIX_RUSR
TRAN_UNIX_WUSR
TRAN_UNIX_XUSR
TRAN_UNIX_RWXG
TRAN_UNIX_RGRP
TRAN_UNIX_WGRP
TRAN_UNIX_XGRP
TRAN_UNIX_RWXO
TRAN_UNIX_ROTH
TRAN_UNIX_WOTH
TRAN_UNIX_XOTH
TRAN_WIN32_ARCHIVE
TRAN_WIN32_SYSTEM
TRAN_WIN32_HIDDEN
TRAN_WIN32_READONLY
TRAN_WIN32_NORMAL

You may add constants from different operating systems if you wish, to allow the function to provide similar functionality on either platform.
SetNull (<variable>)

Sets the value of a variable to null.
SetTblBufInfo(<Table Name>, <Long MaxRowsToKeep>, <Long RowsToFlush>)

Sets the maximum number of rows to be kept in memory for a Transall database table and sets the number of rows to be flushed to disk when
the maximum is exceeded for a single table in Transall. These values default to 2GB and 10,000.

SetTblDefaultBufInfo(<Long MaxRowsToKeep>, <Long RowsToFlush>)
Sets the maximum number of rows to be kept in memory for all Transall database tables and sets the number of rows to be flushed to disk
when the maximum is exceeded for all tables in Transall. These values default to 2GB and 10,000.

SetTblSwapName(<String SwapFileName>)
Sets the name of the swapfile that Transall should use should table rows need to be flushed to disk when the maximum number of rows is
exceeded.

SetTblSwapSize(<Long SizeInBytes>)

423

Sets the maximum size of the swapfile that Transall will create should table rows need to be flushed to disk when the maximum number of
rows is exceeded. When new swap files must be created the file name is appended with a number.

<numeric value> = Sgn (<numeric expression >)
Returns an integer indicating the sign of a number.

<numeric value> = Shell(<string expression command> [, <integer WindowStyle>])
This function runs an executable program as a separate process. A value of zero is returned if an error occurred. On Windows platforms, an
integer value indicating the style of the window of the created process may optionally be specified. On non-Windows platforms, this value is
ignored. Please note that certain commands, batch files, or shell scripts may require that they be passed as a command to a system command
shell, such as ksh, bash, or cmd.exe to function properly.

<numeric value> = Sin (<numeric expression >)
Returns the sine of an angle.

SortSet(<column name>, <set name>[,<boolean descending sort>])
Sorts all rows in a set by a column.

SortTable (<column name>[,<boolean descending sort>])
Sorts all rows in a table by a column.

SortTableMulti(Tbl.column, descend [,tbl.column2, descend2 ...])
Allows sorting of Transall tables by more than one column. For each column named, you must specify a value to indicate whether the column
will be sorted in ascending or descending order. A non-zero value indicates that the specified column will be sorted in descending order.

Space(<count>)
Returns a string consisting of the indicated number of spaces.

<numeric value> = Sqr (<numeric expression >)
Returns the square root of a number.

Appendix A – Statement Syntax

424

Static <varname> As <type> [Init <value>]
Causes a variable to be defined whose contents do not change between function or subroutine invocations. In this manner they are similar to
a global variable, but unlike a global variable, the variable name is visible only to the function or subroutine in which the variable is declared.
Using the optional "Init <value>" clause causes "<value>" to be stored in the variable before the variable is first used.

Public Sub Run()
 Dim Count As Integer

 Count = 10

 While(Count > 0)
 Call CountOff()
 Count = Count - 1
 Wend
 End Sub

 Public Sub CountOff()
 Static Count As Integer Init 1

 WriteConStdOut(" " & Count & _CRLF_)
 Count = Count + 1
 End Sub

produces:
1
2
3
4
5
6
7
8
9
10

StrComp(<string1>, <string2>[, <case_insensitive>])
Compares two strings. It returns -1 if string1 comes before string2, 0 if the two strings are equal, or 1 if string1 comes after string2.
"<case_insensitive>", if used, should be either 0 to indicate a case sensitive compare (the default) or 1 to indicate that case should be ignored
when comparing the strings.

<string> = String$(<numeric expression>,<string expression>)
Returns a string consisting of the string expression repeated numeric expression times.

StrReverse(<string>)
Returns a string which is identical to the string passed in, except the order of the characters is reversed.

425

<Access Specifier> Sub <name> ([[Optional] [ByVal] <Parm> As <Data Type>,...
[= <default>]])

<statements...>
End Sub

Method definition

Parameter Value
Access Specifier The valid choices are as follows:

• Public—Items are accessible from any method.
• Protected—Items are accessible from member methods and inheriting

classes.
• Private—Items are accessible from member methods.

Optional Preface the parameter definition with the keyword "Optional" and supply
a default value to the parameter(s).

ByVal Indicates the value should be passed by a copy value on the stack rather
than by a pointer back to the original value.

ByRef *default * Indicates the value should be passed by a reference pointer back to the
original value rather than by a copy value on the stack.

Data Type The valid choices are as follows:
• Integer—16-bit signed integer.
• Long—32-bit signed integer.
• Long Long—64-bit signed integer.
• String—BSTR up to 2 GB in length.
• DateTime—Date/Time structure in the form of CCYY/MM/

DD.HH.MI.SS.MMMMMMMMM.
• Float—32-bit (4-byte) floating-point number.
• Double—64-bit (8-byte) floating-point number.
• PNum(dig left[, dig right[, “S” or ”U”]])—Packed zoned-decimal

field.
• UNum(dig left[, dig right[, “S” or ”U”]])—Zoned-decimal field.
• <User-defined type>—See Type statement.

= <default> Preface the parameter definition with the keyword "Optional" and supply
a default value to the parameter(s).

Appendix A – Statement Syntax

426

Using optional default values:
Public Sub Sub(Optional ByVal name As type = <default>)
 *
 *
 *

 Public Sub Count(Optional ByVal First As String = "Uno", _
 Optional ByVal Second As String = "Dos", _
 Optional ByVal Three As String = "Tres")

 *
 *
 *
 Call Count() ' Just like Call Count("Uno", "Dos", "Tres")
 Call Count(1) ' Just like Call Count(1, "Dos", "Tres")
 Call Count(1, 2) ' Just like Call Count(1, 2, "Tres")
 Call Count(1, 2, 3)
Note that once an optional parameter is defined, all subsequent parameters must be defined with default values as well.

Switch(<expr 1>, <choice1>[, ... <expr n>, <choice n>])
Similar to the Choose() function, it evaluates each expression in the list and returns the choice corresponding to the first expression that
evaluates to TRUE. The expression may be a variable, a function call, or an expression such as "value < 7". Note however, that if the expression
uses an operator, the expression should be enclosed in parentheses, such as "(value < 7)". Switch() evaluates every choice and expression in
the list, even though only one is returned, so you should be careful to avoid unwanted side effects.

<numeric value> = Tan (<numeric expression >)
Returns the tangent of an angle.

<datetime> = Time
Returns the current system time.

TimeSerial(<hour>, <minute>, <second>)
Returns a DateTime value reflecting the indicated time. Note that relative values may be used for the hour, minute, or second values. Negative
values indicate that much time before of that hour, minute or second. For example, TimeSerial(3, -15, 0) indicates 15 minutes before 3:00, or
2:45.

TransAllBeginTrans
This causes all Transall database working storage tables to begin transaction logging.

TransAllEndTrans
This causes all Transall database working storage tables to end transaction logging (i.e. commit).

TransAllRollbackTrans
This causes all Transall database working storage tables to return to the state they were in when TransAllBeginTrans was last called.

TransLogTransMessage(<String Message>)
Writes a general message to the Transall Recap Log File.

<string> = Trim$(<string expression>)
Returns a string with both leading (left most) and trailing (right most) spaces removed.

<Bool> = TrnSys$InDocuflex
Returns True when running under the ISITAVM Transall host for Docuflex.

<Bool> = TrnSys$InTranDynm
Returns True when running under the TRANDYNM Dynamic Load Module Transall host.

<Bool> = TrnSys$InTranExe
Returns True when running under the TRANEXE Batch Command Line Transall host.

<Bool> = TrnSys$InTranHost

427

Returns True when running under the TRANHOST ActiveX COM Transall host.

<Bool> = TrnSys$InTranRule
Returns True when running under the TRANRULE Transall host for IDS.

TrnSys$LocaleDefCurrencySym <String>
Returns the default currency symbol returned by Transall from the Format$ command.

TrnSys$LocaleDefDateSym <String>
Returns the default date separator symbol returned by Transall from the Format$ command.

TrnSys$LocaleDefDecimalSym <String>
Returns the default decimal symbol returned by Transall from the Format$ command.

TrnSys$LocaleDefDigitGroupSym <String>
Returns the default digit grouping symbol returned by Transall from the Format$ command.

TrnSys$LocaleDefNegativeSym <String>
Returns the default negative symbol returned by Transall from the Format$ command.

TrnSys$LocaleDefTimeAmSym <String>
Returns the default AM time symbol returned by Transall from the Format$ command.

TrnSys$LocaleDefTimePmSym <String>
Returns the default PM time symbol returned by Transall from the Format$ command.

TrnSys$LocaleDefTimeSym <String>
Returns the default time separator symbol returned by Transall from the Format$ command.

TrnSys$LocaleSetCurrencySym (<String New Value>)
Sets the currency symbol returned by Transall from the Format$ command.

TrnSys$LocaleSetDateSym (<String New Value>)
Sets the date separator symbol returned by Transall from the Format$ command.

TrnSys$LocaleSetDecimalSym (<String New Value>)
Sets the decimal symbol returned by Transall from the Format$ command.

TrnSys$LocaleSetDigitGroupSym (<String New Value>)
Sets the digit grouping symbol returned by Transall from the Format$ command.

TrnSys$LocaleSetNegativeSym (<String New Value>)
Sets the negative symbol returned by Transall from the Format$ command.

TrnSys$LocaleSetTimeAmSym (<String New Value>)
Sets the AM time symbol returned by Transall from the Format$ command.

TrnSys$LocaleSetTimePmSym (<String New Value>)
Sets the PM time symbol returned by Transall from the Format$ command.

TrnSys$LocaleSetTimeSym (<String New Value>)
Sets the time separator symbol returned by Transall from the Format$ command.

Appendix A – Statement Syntax

428

<Bool> = TrnSys$OnAIX
Returns True when running on AIX

<Bool> = TrnSys$OnLinux
Returns True when running on Linux

<String> = TrnSys$OnPlatform
Returns a string such as "Windows", "AIX", "Linux", and "Solaris"

<Bool> = TrnSys$OnSolaris
Returns True when running on Solaris

<Bool> = TrnSys$OnUnix
Returns True when running on Any Unix platform

<Bool> = TrnSys$OnWin32
Returns True when running on 32bit Windows

<Number> = True
Can be used in conitional expressions or to set a variable’s value True.

[<access specifier>] Type <user type name> [Packed] <elementname> [(subscripts)]
As <Data Type> [<elementname> [(subscripts)] As <Data Type>]

Defines a user-defined data type
<long> = UBound(<array>)

Returns the upper boundary of the array.
VERSION <0-9999>[.<0-9999>[.<0-9999>[.<0-9999>]]]

Such as:
VERSION 3.6.0.24
VERSION 2.17
Note that there should be no other text (aside from leading spacing) on the line as the VERSION statement, and that any non-specified values
default to zero. In addition, new options were added to the TranCC and TranExe commands to support the VERSION statement:
For the TranCC command, the "/AIB" (Auto-Increment Build number) option was added. Whenever this option is used, the compiler will
increment the version number found in the source file (if no VERSION was specified, it defaults to 1.0.0.0) and writes the new VERSION
statement into the source file.
For the TranExe command, the "/info" option was added. This not only allows the user to see the user to see the version number that was
supplied by the VERSION statement, but also shows the version of TranCC that was used to build the executable, and the names of public
methods that are defined in the executable.

Weekday (<DateTime>)
Returns an value between 1 (Sunday) and 7 (Saturday) that indicates the day of the week for the datetime argument.

429

With <base name>
<statements...>
End <base name>
The "With" statement allows you to specify the prefix of structure variables so that you do not have to retype the base:
Private Type Categories Packed
 a As String
 b As String
 c As String
 d As String
End Type

 *
 *
 *

Dim FileFolder As Categories

With FileFolder
 .a = "Apple"
 .b = "Banana"
 .c = "Candy"
 .d = "Dessert"
End With

is the same as typing:

Private Type Categories Packed
 a As String
 b As String
 c As String
 d As String
End Type

 *
 *
 *

 FileFolder.a = "Apple"
 FileFolder.b = "Banana"
 FileFolder.c = "Candy"
 FileFolder.d = "Dessert"

Note also that it is possible to nest one "With" block inside another:

Private Type Categories Packed
 a As String
 b As String
 c As String
 d As String
End Type

While <expr>
<statements...>
Wend
The While...Wend construct allows you to build a loop in which the looping condition is tested each time, before the code is executed.

<boolean integer> = WriteConStdErr (<string expression>)
Returns False if the value of the string expression is written to the console’s standard error output. Returns True if write failed.

<boolean integer> = WriteConStdOut (<string expression>)

Appendix A – Statement Syntax

430

Returns False if the value of the string expression is written to the console’s standard output. Returns True if write failed.

WriteFixed [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to right of
decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of decimal>,
<number places to right of decimal>, <const string sign>, <any data type varname>, …]

Write fixed length records.

Parameter Value
Const String
Data-type

The valid choices are as follows:
• DISPLAY—Character data.
• ZONED DECIMAL—Numeric data.
• 8-bit—1 byte.
• 16-bit—2 bytes (WORD).
• 32-bit—4 bytes (DWORD or FLOAT).
• 64-bit—Eight binary bytes (DOUBLE).
• COMP [SYNC]—Binary, 2 bytes for 1 through 4 digits, 4 bytes for 5 – 9, 8

bytes for 10 – 18.
• COMP-1 [SYNC]—4 Bytes floating point (FLOAT).
• COMP-2 [SYNC]—8 Bytes floating point (DOUBLE).
• COMP-3 [SYNC]—Packed decimal.
• COMP-4 [SYNC]—Same as COMP.

Const String Sign The valid choices are as follows:
• S—Signed.
• L—Signed leading.
• T—Signed trailing.
• U—Unsigned.

WriteVariable #<file number>, <record delimiter>, <element delimiter>, <data delimiter>, <expression> [, <expression>...]
Write variable length records

WriteXmlDocumentSet(<root table>, <string file name>,<string DTD information>)
Writes an XML document from a Transall database hierarchy.

WriteXmlDocumentSet(<Table>, <File Name String>, <Declaration File Name String>)
Writes an XML document from a Transall database hierarchy.

<string> = UCase$(<string expression>)
Returns a string with all letters converted to uppercase.

UpdateRow <Table Name> ([<Column>,<Column>...]) Values ([<expression>,<expression>…])
Update the current row in a table in the Transit object’s database

431

<double> = Val (<string>)
Converts a string to a double.

<Error code As Integer> = VdrAddExplicitForm (<pRFMTTbl As Long>, <MemName As String>, < Revision As Long>)
Adds one explicit form and revision level to the list of forms used for this merge set.

<Error code As Integer> = VdrAddFormsLibrary (<pRFMTTbl As Long>, <EDLName As String>)
Supplies the name of an EDL to be search by the merge assembly engine while resolving form names listed the VRF.

<Error code As Integer> = VdrAddTag (<pRFMTTbl As Long>, <TagName As String>, <TagData As String>, <DataLen As
Integer>)

Writes a Tag name and its data directly to the VRF.
<Error code As Integer> = VdrBeginReformatter (<pRFMTTbl As Long>, <UserIDName As String>)

Establishes communications with the reformatter system.
<Error code As Integer> = VdrBuildMergeSet (<pRFMTTbl As Long>, <DataBuf As String>, < BufLen As Long>)

Passes the merge record to the reformatter system.
VdrCallMrgUserOnWin32 <boolean value expression>

True indicates that Transall should call MRGUSER.W32 (database rulebase) and False indicates that Transall should call DMKUSER.W32
(filebase rulebase) to perform VDR operations on non 370 platforms.

<integer error code> = VdrCloseVRF (<pRFMTTbl As Long>,<VRFName As String>)

Closes one VRF file at a time.
<integer error code> = VdrCloseVRFs (<pRFMTTbl As Long>)

Closes all VRF files.
<long return code> = VdrDmgrfmtGetReasonCode(<pRFMTTbl As Long>)

Returns the RFCB-REASON-CODE value from the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT
<long return code> = VdrDmgrfmtGetReturnCode(<pRFMTTbl As Long>)

Returns the RFCB-RETURN-CODE value from the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT
<Old Value As String > = VdrDmgrfmtSetAllowMissingRulebase(pRFMTTbl As Long, sAllowMissingRulebaseFlag As String)

Sets the RFCB-ALLOW-MISSING-RULEBASE value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT
<Old Value As String > = VdrDmgrfmtSetAlternateParmList(pRFMTTbl As Long, sAlternateParmListFlag As String)

Sets the RFCB-ALTERNATE-PARM-LIST value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

Appendix A – Statement Syntax

432

<Old Value As String > = VdrDmgrfmtSetEndMergeSet(pRFMTTbl As Long, sEndMergeSetFlag As String)
Sets the RFCB-END-MERGESET value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetMaxMessageLevel(pRFMTTbl As Long, sMessageLevel As String)
Sets the RFCB-MAX-MESSAGE-LEVEL value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetNoEffDateMsg(pRFMTTbl As Long, sNoEffDateMsgFlag As String)
Sets the RFCB-NO-EFF-DATE-MSG value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetSuppressImplictForms(pRFMTTbl As Long, sSuppressImplictFormsFlag As String)
Sets the RFCB-SUPPRESS-IMPLICIT-FORMS value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetSuppressSysPrint(pRFMTTbl As Long, sSysPrintFlag As String)
Sets the RFCB-SUPPRESS-SYSPRINT value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetVrfAllocDDname(pRFMTTbl As Long, sDDname As String)
Sets the RFCB-VRF-DDNAME value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetWriteExplictForms(pRFMTTbl As Long, sWriteRfcbFlag As String)
Sets the RFCB-WRITE-EXPLICIT-FORMS value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetWriteExplictForms(pRFMTTbl As Long, sWriteExplictFormsFlag As String)
Sets the RFCB-WRITE-EXPLICIT-FORMS value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetWriteRfcb(pRFMTTbl As Long, sWriteRfcbFlag As String)
Sets the RFCB-WRITE-RFCB value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Error code As Integer> = VdrEndMergeSet (<pRFMTTbl As Long>)
Marks the end of the merge record.

<Error code As Integer> = VdrEndReformatter (<pRFMTTbl As Long>)
Ends communications with the reformatter program.

<Error code As Integer> = VdrSetEffectiveDate (<pRFMTTbl As Long>, <EffDate As String>)
Sets the effective date of form images to be selected in the EDL.

<Error code As Integer> = VdrSetJobDescription (<pRFMTTbl As Long>, <JobDescription As String>)
Allows the user to specify a unique job description for a job submitted to the Documaker queue.

<Error code As Integer> = VdrSetMessageFile (<pRFMTTbl As Long>, <PathFileName As String>)
Sets the path and file name to where the Documaker messages with be written.

<Error code As Integer> = VdrSetProductionDefinition (<pRFMTTbl As Long>, <ProdDef As String>)
Sets the name of the production definition to use for immediate merging.

<Error code As Integer> = VdrSetRulebase (<pRFMTTbl As Long>, <Rulebase As String>, <RevLvl As Long>)

Sets the rulebase name and revision level from which to retrieve the merging rules.
<Error code As Integer> = VdrSetVRFFile (<pRFMTTbl As Long>, <VRFName As String>)

Sets the path and file name of the VRF file to be created.

<Error code As Integer> = VdrSetWorkDirectory (<pRFMTTbl As Long>, <Directory As String>)
Sets the directory for temporary work files.

<Error code As Integer> = VdrStartMergeSet (<pRFMTTbl As Long>)
Marks the start of a merge set in the VRF file.

<Error code As Integer> = VdrSubmit (<pRFMTTbl As Long>, <ProductionDef As String>, <VDRpathAndFile As String>)
Submits a VRF to the Documaker merge server processing queue.

433

<double> = Val (<string>)
Converts a string to a double.

<Error code As Integer> = VdrAddExplicitForm (<pRFMTTbl As Long>, <MemName As String>, < Revision As Long>)
Adds one explicit form and revision level to the list of forms used for this merge set.

<Error code As Integer> = VdrAddFormsLibrary (<pRFMTTbl As Long>, <EDLName As String>)
Supplies the name of an EDL to be search by the merge assembly engine while resolving form names listed the VRF.

<Error code As Integer> = VdrAddTag (<pRFMTTbl As Long>, <TagName As String>, <TagData As String>, <DataLen As
Integer>)

Writes a Tag name and its data directly to the VRF.
<Error code As Integer> = VdrBeginReformatter (<pRFMTTbl As Long>, <UserIDName As String>)

Establishes communications with the reformatter system.
<Error code As Integer> = VdrBuildMergeSet (<pRFMTTbl As Long>, <DataBuf As String>, < BufLen As Long>)

Passes the merge record to the reformatter system.
VdrCallMrgUserOnWin32 <boolean value expression>

True indicates that Transall should call MRGUSER.W32 (database rulebase) and False indicates that Transall should call DMKUSER.W32
(filebase rulebase) to perform VDR operations on non 370 platforms.

<integer error code> = VdrCloseVRF (<pRFMTTbl As Long>,<VRFName As String>)

Closes one VRF file at a time.
<integer error code> = VdrCloseVRFs (<pRFMTTbl As Long>)

Closes all VRF files.
<long return code> = VdrDmgrfmtGetReasonCode(<pRFMTTbl As Long>)

Returns the RFCB-REASON-CODE value from the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT
<long return code> = VdrDmgrfmtGetReturnCode(<pRFMTTbl As Long>)

Returns the RFCB-RETURN-CODE value from the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT
<Old Value As String > = VdrDmgrfmtSetAllowMissingRulebase(pRFMTTbl As Long, sAllowMissingRulebaseFlag As String)

Sets the RFCB-ALLOW-MISSING-RULEBASE value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT
<Old Value As String > = VdrDmgrfmtSetAlternateParmList(pRFMTTbl As Long, sAlternateParmListFlag As String)

Sets the RFCB-ALTERNATE-PARM-LIST value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

Appendix A – Statement Syntax

434

<Old Value As String > = VdrDmgrfmtSetEndMergeSet(pRFMTTbl As Long, sEndMergeSetFlag As String)
Sets the RFCB-END-MERGESET value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetMaxMessageLevel(pRFMTTbl As Long, sMessageLevel As String)
Sets the RFCB-MAX-MESSAGE-LEVEL value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetNoEffDateMsg(pRFMTTbl As Long, sNoEffDateMsgFlag As String)
Sets the RFCB-NO-EFF-DATE-MSG value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetSuppressImplictForms(pRFMTTbl As Long, sSuppressImplictFormsFlag As String)
Sets the RFCB-SUPPRESS-IMPLICIT-FORMS value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetSuppressSysPrint(pRFMTTbl As Long, sSysPrintFlag As String)
Sets the RFCB-SUPPRESS-SYSPRINT value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetVrfAllocDDname(pRFMTTbl As Long, sDDname As String)
Sets the RFCB-VRF-DDNAME value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetWriteExplictForms(pRFMTTbl As Long, sWriteRfcbFlag As String)
Sets the RFCB-WRITE-EXPLICIT-FORMS value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetWriteExplictForms(pRFMTTbl As Long, sWriteExplictFormsFlag As String)
Sets the RFCB-WRITE-EXPLICIT-FORMS value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Old Value As String > = VdrDmgrfmtSetWriteRfcb(pRFMTTbl As Long, sWriteRfcbFlag As String)
Sets the RFCB-WRITE-RFCB value in the RBCB-CONTROL-BLOCK when Transall is calling DMGRFMT

<Error code As Integer> = VdrEndMergeSet (<pRFMTTbl As Long>)
Marks the end of the merge record.

<Error code As Integer> = VdrEndReformatter (<pRFMTTbl As Long>)
Ends communications with the reformatter program.

<Error code As Integer> = VdrSetEffectiveDate (<pRFMTTbl As Long>, <EffDate As String>)
Sets the effective date of form images to be selected in the EDL.

<Error code As Integer> = VdrSetJobDescription (<pRFMTTbl As Long>, <JobDescription As String>)
Allows the user to specify a unique job description for a job submitted to the Documaker queue.

<Error code As Integer> = VdrSetMessageFile (<pRFMTTbl As Long>, <PathFileName As String>)
Sets the path and file name to where the Documaker messages with be written.

<Error code As Integer> = VdrSetProductionDefinition (<pRFMTTbl As Long>, <ProdDef As String>)
Sets the name of the production definition to use for immediate merging.

<Error code As Integer> = VdrSetRulebase (<pRFMTTbl As Long>, <Rulebase As String>, <RevLvl As Long>)

Sets the rulebase name and revision level from which to retrieve the merging rules.
<Error code As Integer> = VdrSetVRFFile (<pRFMTTbl As Long>, <VRFName As String>)

Sets the path and file name of the VRF file to be created.

<Error code As Integer> = VdrSetWorkDirectory (<pRFMTTbl As Long>, <Directory As String>)
Sets the directory for temporary work files.

<Error code As Integer> = VdrStartMergeSet (<pRFMTTbl As Long>)
Marks the start of a merge set in the VRF file.

<Error code As Integer> = VdrSubmit (<pRFMTTbl As Long>, <ProductionDef As String>, <VDRpathAndFile As String>)
Submits a VRF to the Documaker merge server processing queue.

435

VsamDelete [#]<file number>
Deletes the current record from the VSAM file. After a deletion of a record, the file is positioned to the next record in the file.

VsamInsert [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to right of
decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of decimal>,
<number places to right of decimal>, <const string sign>, <any data type varname>, …]

Adds a new record to the VSAM file. After a successful VsamInsert the file is positioned to the record following the one inserted.
VsamRead [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to right of
decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of decimal>,
<number places to right of decimal>, <const string sign>, <any data type varname>, …]

Retrieves the next record from the VSAM file. The record is retrieved for update (if the file’s open mode permits writing). For a file with duplicate
keys, records with the same key are always retrieved in the order in which they were added to the file.

VsamReadPrior [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to right of
decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of decimal>,
<number places to right of decimal>, <const string sign>, <any data type varname>, …]

Retrieves the prior record from the VSAM file. The record is retrieved for update (if the file’s open mode permits writing). For a file with duplicate
keys, records with the same key are always retrieved in the order in which they were added to the file, not in the reverse of this order because
of this being a prior read request.

Appendix A – Statement Syntax

436

VsamReplace [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to right of
decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of decimal>,
<number places to right of decimal>, <const string sign>, <any data type varname>, …]

Replaces the current record of the VSAM file. Replacement of the record does not change the file position. However, the updated record is no
longer current and must be retrieved again before another update.

VsamSearch [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to right of
decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of decimal>,
<number places to right of decimal>, <const string sign>, <any data type varname>, …]

Searches forward in the VSAM file for a record matching the generic key specification. The first record found with a key greater than or equal
to the key specified is considered to match.

VsamSearchBack [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to right of
decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of decimal>,
<number places to right of decimal>, <const string sign>, <any data type varname>, …]

Searches backward in the VSAM file for a record matching the generic key specification. The first record found with a key greater than or equal
to the key specified is considered to match.

VsamSearchBackExact [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to
right of decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of
decimal>, <number places to right of decimal>, <const string sign>, <any data type varname>, …]

Searches backward in the VSAM file for a record matching the exact key specification.
VsamSearchExact [#]<file number>, <const string data-type>, <number places to left of decimal>, <number places to right of
decimal>, <const string sign>, <any data type varname>[, <const string data-type>, <number places to left of decimal>,
<number places to right of decimal>, <const string sign>, <any data type varname>, …]

Searches forward in the VSAM file for a record matching the exact key specification.
<integer> = Year (<datetime>)

Returns the year.
XmlClose(<long file handle>)

Closes an XML file handle.
XmlDeclareColAttribute(<table column>, <string attribute name>)

Declares that a table column contains XML element attribute data.
XmlDeclareColCDATA(<table column>)

Declares that a table column contains XML string data.
XmlDeclareColComment(<table column>)

Declares that a table column contains XML comment data.
XmlDeclareColProcInstr(<table column>)

Declares that a table column contains XML processing instructions.

XmlDeclareColStringData(<table column>)
Declares that a table column contains XML string data.

XmlDeclareTableElement(<table>, <string element name)
Declares that a table contains XML element data.

437

<boolean integer> = XmlEncodingTranscode(<boolean integer encode output>)
Tells Transall to encode XML data to the default encoding scheme as it is written.

XmlGetDeclaration (<long file handle>, <long attribute type>, <string attribute name>, <string variable attribute value> [,<long
attribute type>, <string attribute name>, <string variable attribute value>…])

Reads XML declaration information from an XML document.

Parameter Value
Attribute Type The valid choices are as follows:

• 8—XML Declaration Information.
• 9—Document Type Declaration information.

XmlGetDTD(<long file handle>, <long attribute type>, <string element name>, <string attribute name>, <string variable value>
[,<long attribute type>, <string element name>, <string attribute name>, <string variable value>…])

Reads data from an XML document’s DTD, if one exists.

Parameter Value
Attribute Type The valid choices are as follows:

• 11—Element declaration.
• 12—Attribute declaration.
• 13—Entity declaration.
• 14—Notation declaration.

XmlGetElementData(<long file handle>, <long attribute type>, <string attribute name>, <string variable value> [,<long
attribute type>, <string attribute name>, <string variable value>…])

Reads data from an XML document.
<boolean integer success> = XmlGetElementData (<long XML file handle>, <long XML item type>, <string name of XML item>,
<any variable to receive XML file data>[,<long XML item type>, <string name of XML item>, <any variable to receive XML file
data>]...)

Retrieves the XML data from an XML file.

Attribute Type
• 0—Root element.
• 1—Element Data.
• 2—Character Data.
• 3—CDATA.
• 4—Processing Instruction.
• 5—Comment.
• 6—End.
• 15—Attribute Data.
• 16—Attribute Data Iteration–first attribute, second attribute, ….

Appendix A – Statement Syntax

438

Parameter Value
The valid choices are as follows:

<long result> = XmlGetNextElement (<long file handle>, <variable string XML element name>, <long XML chunk type>)
Reads the next chunk of information from an XML document.

Parameter Value
Result The valid choices are as follows:

• 0—OK.
• 1—Warning – See Err.Description.
• 2—Recoverable error – See Err.Description.
• 3—Unrecoverable error – See Err.Description.

XML Chunk Type The valid choices are as follows:
• 1—Root.
• 2—Character Data.
• 3—CDATA.
• 4—Processing Instruction.
• 5—Comment.
• 6—Element End.

<long file handle> = XmlOpen (<string filename>, <string encoding value>, <long validation flag>, <long name space flag>,
<long autoencoding boolean>)

439

Opens an XML file for reading and returns a handle to the file.

Parameter Value
Encoding Value The valid choices are as follows:

• DEFAULT or spaces—Used when Auto Encoding enabled.
• Available encoding schemes:

• ISO-8859-1
• UTF-8
• UTF-16
• LATIN1
• UCS-4
• WINDOWS-1252
• IBM1140
• IBM037
• USASCII

Validation Flag The valid choices are as follows:
• 0—No Validation.
• 1—Always Validate.
• 2—Automatically Validate.

Name Space Flag The valid choices are as follows:
• 0—No namespace processing.
• 1—Support namespace processing.

Autoencoding Boolean The valid choices are as follows:
• 0—No autoencoding.
• 1—Auto encode–parser uses original encoding for document.

XmlSetEncoding(<String Encoding>)
Sets the encoding character set for an XML document.

<boolean integer> = XmlWriteWhiteSpace(<boolean integer include whitespace>)
Tells Transall to write XML files with whitespace for readability.

<long old value> = XmlWriteWhiteSpace(<boolean flag>)
Causes Transall to write white space characters when writing XML documents.

Appendix A – Statement Syntax

440

CONDITIONAL SYNTAX
Conditional processing.

If <cond> Then <exp> ElseIf <cond> Then <exp> Else <exp>

If <condition> Then
<statements...>
ElseIf <condition> Then
<statements...>
Else <expression>
<statements...>
End If

If Not(A < B)

B = Not A

"Is" conditional operator for comparing object references.
Dim A As Object
 Dim B As Object
 Set C = A
 *
 *
 *
 Set A = CreateObject("Some.Application")
 Set B = CreateObject("SomeOther.Application")
 Set C = A
 *
 *
 *
 If Not A Is B Then
 WriteConStdOut("A and B are different" & _CRLF_)
 Else
 WriteConStdOut("A and B are the same?" & _CRLF_)
 End If

"In" conditional.
This conditional returns true if the left value is contained in the set of values to the right of the conditional. The list may contain either variables
or constants.
B = 0
 If A In (B, 2, 4, 6, 8, 10) Then
 WriteConStdOut(A & " is an even integer between 0 and 10." & _CRLF_)
 End If

Select...Case control structure.
Select Case B
 Case A,7,Is > 10
 WriteConStdOut("It's A or 7 or > 10!!!" & _CRLF_)

 Case Len(Mid$("Funky", 2, 1))
 WriteConStdOut("It's 1" & _CRLF_)

 Case Else
 WriteConStdOut("It's none of the above!" & _CRLF_)

 End Select

Conditional Syntax

441

Conditional Assignment.

LIKE CONDITIONAL OPERATOR SYNTAX
Used to compare two strings.

Syntax
result = string Like pattern
The Like operator syntax has these parts:

Remarks
If string matches pattern, result is True; if there is no match, result is False.
Results in string comparisons are based on a sort order that is derived from the
internal binary representations of the characters.
Built-in pattern matching provides a versatile tool for string comparisons. The
pattern-matching features allow you to use wildcard characters, character lists, or
character ranges, in any combination, to match strings. The following table shows
the characters allowed in pattern and what they match:

<variable> =If <cond> Then <exp> ElseIf <cond> Then <exp> Else <exp>

Operator Value
= Equal
<> Not Equal
< Less than
<= Less than or Equal
> Greater than
>= Greater than or Equal

Part Description
result Required; any numeric variable.
string Required; any string expression.
pattern Required; any string expression conforming to the pattern-

matching conventions described in Remarks.

Characters in pattern Matches in string
? Any single character.

* Zero or more characters.
Any single digit (0-9).
[charlist] Any single character in charlist.
[!charlist] Any single character not in charlist.

Appendix A – Statement Syntax

442

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to
match any single character in string and can include almost any character, including
digits.

By using a hyphen (-) to separate the upper and lower bounds of the range, charlist
can specify a range of characters. For example, [A-Z] results in a match if the
corresponding character position in string contains any uppercase letters in the range
A-Z. Multiple ranges are included within the brackets without delimiters.
The meaning of a specified range depends on the binary character ordering of the
system the code is running on.

Other rules for pattern matching
• An exclamation point (!) at the beginning of charlist means that a match is made

if any character except the characters in charlist is found in string. When used
outside brackets, the exclamation point matches itself.

• A hyphen (-) can appear either at the beginning (after an exclamation point if one
is used) or at the end of charlist to match itself. In any other location, the hyphen
is used to identify a range of characters.

• When a range of characters is specified, they must appear in ascending sort order
(from lowest to highest). [A-Z] is a valid pattern, but [Z-A] is not.

• The character sequence [] is considered a zero-length string ("").

Note To match the special characters left bracket ([), question mark (?), number sign (#), and
asterisk (*), enclose them in brackets. The right bracket (]) can't be used within a group
to match itself, but it can be used outside a group as an individual character.

Expression Syntax

443

EXPRESSION SYNTAX
• <variable> = <expression/method function>

Variable assignment.

• = Assignment

Assigns the value of an expression to a variable.
Syntax:

variable = valueexpression
• + Addition

Sum two numbers or concatenate two strings.
Syntax:

result = operand1 + operand2

Operator Value
= Assignment operator.
+ – * / % ^ Add, Subtract, Multiply, Divide, Modulus, Exponent operators
() Expression grouping
& Convert to string and concatenate operator
Hexadecimal constants Count = &H2A + 0x200
Octal constants Count = &052
Built-in constants for common
character sequences

• _CRLF_—Carriage Return/Line Feed
• _CR_—Carriage Return
• _LF_—Line Feed
• _TAB_—Tab
• _BS_—Backspace
• _QUOTE_—Double Quote
• _FF_—Form Feed

WriteConStdOut(_QUOTE_ & "Wow!" &
QUOTE & " he exclaimed." & _CRLF_)

Examples
x = (y + 3) x is assigned the value of y + 3
Call s(arg1, arg2) Subroutine call
z = (f(x) + 3) A function-call expression
str = “Jim” & (f(x) + 3) & p str is assigned the result of the string concatenation

Appendix A – Statement Syntax

444

• - Subtraction

Finds the difference between two numbers or to indicate the negative value of an
operand.
Syntax:

result = operand1 + operand2
• * Multiplication

Multiplies two numbers.
Syntax:

result = operand1 * operand2
• / Division

Divides two numbers.
Syntax:

result = operand1 / operand2
• % Modulus

Divides two numbers and returns only the remainder.
Syntax:

result = operand1 % operand2
• Mod Modulus

Divides two numbers and returns only the remainder.
Syntax:

result = operand1 Mod operand2
• ^ Exponent

Used to raise a number to the power of an exponent.
Syntax:

result = number ^ exponent
• & Concatenate

Forces string concatenation of two operands.
Syntax:

result = operand1 & operand2

Formatting Syntax

445

FORMATTING SYNTAX
The following table shows the characters you can use to create user-defined
numerical formats and the meaning of each:

Character Meaning
Null string Display the number with no formatting.
0 Digit placeholder.

Display a digit or a zero. If there is a digit in the expression being formatted in the position where the 0 appears in the format
string, display it; otherwise, display a zero in that position.
If the number being formatted has fewer digits than there are zeros (on either side of the decimal) in the format expression,
leading or trailing zeros are displayed. If the number has more digits to the right of the decimal separator than there are zeros
to the right of the decimal separator in the format expression, the number is rounded to as many decimal places as there are
zeros. If the number has more digits to the left of the decimal separator than there are zeros to the left of the decimal separator
in the format expression, the extra digits are displayed without modification.

Digit placeholder.
Display a digit or nothing. If there is a digit in the expression being formatted in the position where the # appears in the format
string, display it; otherwise, display nothing in that position.
This symbol works like the 0 digit placeholder, except that leading and trailing zeros aren't displayed if the number has the same
or fewer digits than there are # characters on either side of the decimal separator in the format expression.

@ Digit placeholder.
Display a digit or a space. If there is a digit in the expression being formatted in the position where the @ appears in the format
string, display it; otherwise, display a space in that position. If the number being formatted has fewer digits than there are @
characters (on either side of the decimal) in the format expression, leading or trailing spaces are displayed. If the number has
more digits to the right of the decimal separator than there are @ characters to the right of the decimal separator in the format
expression, the number is rounded to as many decimal places as there are @ characters. If the number has more digits to the
left of the decimal separator than there are @ characters to the left of the decimal separator in the format expression, the extra
digits are displayed without modification.

. Decimal placeholder.
The decimal placeholder determines how many digits are displayed to the left and right of the decimal separator. If the format
expression contains only number signs to the left of this symbol, numbers smaller than 1 begin with a decimal separator. If you
want a leading zero to always be displayed with fractional numbers, use 0 as the first digit placeholder to the left of the decimal
separator instead. The actual character used as a decimal placeholder in the formatted output depends on the Number Format
specified in the International section of the Microsoft Windows Control Panel. For some countries, a comma is used as the
decimal separator.

% Percentage placeholder.
The expression is multiplied by 100. The percent character (%) is inserted in the position where it appears in the format string.

, Thousand separator.
The thousand separator separates thousands from hundreds within a number that has four or more places to the left of the
decimal separator. Standard use of the thousand separator is specified if the format contains a comma surrounded by digit
placeholders (0 or #). Two adjacent commas or a comma immediately to the left of the decimal separator (whether or not a
decimal is specified) means "scale the number by dividing it by 1000, rounding as needed." You can scale large numbers using
this technique. For example, you can use the format string "##0,," to represent 100 million as 100. Numbers smaller than 1
million are displayed as 0. Two adjacent commas in any position other than immediately to the left of the decimal separator are
treated simply as specifying the use of a thousand separator. The actual character used as the thousand separator in the
formatted output depends on the Number Format specified in the International section of the Control Panel. For some countries,
a period is used as the thousand separator.

: Time separator.
The time separator separates hours, minutes, and seconds when time values are formatted. The actual character used as the
time separator depends on the Time Format specified in the International section of the Control Panel.

/ Date separator.
The date separator separates the day, month, and year when date values are formatted. The actual character used as the date
separator in the formatted output depends on Date Format specified in the International section of the Control Panel.

Appendix A – Statement Syntax

446

A format expression for numbers can have from one to four sections separated by
semicolons.

The following example has two sections: the first defines the format for positive
values and zeros; the second section defines the format for negative values.
"$#,##0;($#,##0)"

If you include semicolons with nothing between them, the missing
section is printed using the format of the positive value. For
example, the following format displays positive and negative values
using the format in the first section and displays "Zero" if the value
is zero.

"$#,##0;;\Z\e\r\o"
Some sample format expressions for numbers are shown below.
(These examples all assume that Country is set to United States in
the International section of the Control Panel.) The first column
contains the format strings. The other columns contain the output
that results if the formatted data has the value given in the column
headings.

- + $ () space Display a literal character.
To display a character other than one of those listed, precede it with a backslash (\) or enclose it in double quotation marks (" ").

\ Display the next character in the format string.
Many characters in the format expression have a special meaning and can't be displayed as literal characters unless they are
preceded by a backslash. The backslash itself isn't displayed. Using a backslash is the same as enclosing the next character
in double quotation marks. To display a backslash, use two backslashes (\\).
Examples of characters that can't be displayed as literal characters are the date- and time-formatting characters (a, c, d, h, m,
n, p, q, s, t, w, y, and /:), the numeric-formatting characters (#, 0, %, E, e, comma, and period), and the string-formatting
characters (@, &, <, >, and !).

"ABC" Display the string inside the double quotation marks.
To include a string in fmt from within Visual Basic, you must use Chr(34) to enclose the text (34 is the ANSI code for a double
quotation mark).

Character Meaning

If you use The result is
One section only The format expression applies to all values.

Two sections The first section applies to positive values and zeros, the
second to negative values.

Three sections The first section applies to positive values, the second to
negative values, and the third to zeros.

Four sections The first section applies to positive values, the second to
negative values, the third to zeros, and the fourth to Null
values.

Format (fmt) Positive 5 Negative 5 Decimal .5 Null
Null string 5 -5 0.5
0 5 -5 1
0.00 5.00 -5.00 0.50

Formatting Syntax

447

The following table shows the characters you can use to create user-defined date/
time formats and the meaning of each:

#,##0 5 -5 1

#,##0.00;;;Nil 5.00 -5.00 0.50 Nil
$#,##0;($#,##0) $5 ($5) $1
$#,##0.00;($#,##0.00) $5.00 ($5.00) $0.50

0% 500% -500% 50%
0.00% 500.00% -500.00% 50.00%
0.00E+00 5.00E+00 -5.00E+00 5.00E-01
0.00E-00 5.00E00 -5.00E00 5.00E-01

Character Meaning
c Display the date as ddddd and display the time as ttttt, in that order. Only date information is displayed if there is no

fractional part to the date serial number; only time information is displayed if there is no integer portion.
d

dd

ddd

dddd

ddddd

dddddd

Display the day as a number without a leading zero (1-31).

Display the day as a number with a leading zero (01-31).

Display the day as an abbreviation (Sun-Sat).

Display the day as a full name (Sunday-Saturday).

Display a date serial number as a complete date (including day, month, and year) formatted according to the Short Date
setting in the International section of the Windows Control Panel. The default Short Date format is m/d/yy.

Display a date serial number as a complete date (including day, month, and year) formatted according to the Long Date
setting in the International section of the Control Panel. The default Long Date format is mmmm dd, yyyy.

w

ww

Display the day of the week as a number (1 for Sunday through 7 for Saturday.)
Display the week of the year as a number (1-53).

m

mm

mmm
mmmm

Display the month as a number without a leading zero (1-12). If m immediately follows h or hh, the minute rather than the
month is displayed.
Display the month as a number with a leading zero (01-12). If m immediately follows h or hh, the minute rather than the
month is displayed.
Display the month as an abbreviation (Jan-Dec).
Display the month as a full month name (January-December).

q Display the quarter of the year as a number (1-4).
y
yy
yyyy

Display the day of the year as a number (1-366).
Display the year as a two-digit number (00-99).
Display the year as a four-digit number (100-9999).

h
hh

Display the hour as a number without leading zeros (0-23).
Display the hour as a number with leading zeros (00-23).

Appendix A – Statement Syntax

448

The following are examples of user-defined date and time formats:

n
nn

Display the minute as a number without leading zeros (0-59).
Display the minute as a number with leading zeros (00-59).

s
ss

Display the second as a number without leading zeros (0-59).
Display the second as a number with leading zeros (00-59).

ttttt Display a time serial number as a complete time (including hour, minute, and second) formatted using the time separator
defined by the Time Format in the International section of the Control Panel. A leading zero is displayed if the Leading Zero
option is selected and the time is before 10:00 A.M. or P.M. The default time format is h:mm:ss.

9[99999999] Display one to nine positions of milliseconds.
AM/PM Use the 12-hour clock and display an uppercase AM with any hour before noon; display an uppercase PM with any hour

between noon and 11:59 PM.
am/pm Use the 12-hour clock and display a lowercase AM with any hour before noon; display a lowercase PM with any hour

between noon and 11:59 PM.
A/P Use the 12-hour clock and display an uppercase A with any hour before noon; display an uppercase P with any hour

between noon and 11:59 PM.
a/p Use the 12-hour clock and display a lowercase A with any hour before noon; display a lowercase P with any hour between

noon and 11:59 PM.
AMPM Use the 12-hour clock and display the contents of the 1159 string (s1159) in the WIN.INI file with any hour before noon;

display the contents of the 2359 string (s2359) with any hour between noon and 11:59 PM. AMPM can be either uppercase
or lowercase, but the case of the string displayed matches the string as it exists in the WIN.INI file. The default format is
AM/PM.

Character Meaning

Format Display
m/d/yy 12/7/58
d-mmmm-yy 7-December-58
d-mmmm 7 December
mmmm-yy December 58
hh:mm AM/PM 08:50 PM
h:mm:ss a/p 8:50:35 p
h:mm 20:50

h:mm:ss 20:50:35
m/d/yy h:mm 12/7/58 20:50

Formatting Syntax

449

The following table shows the characters you can use to create user-defined string
formats and the meaning of each:

FORMAT FUNCTIONS
Transall supports special formatting tokens that act as format functions. The syntax
rules for these format functions are as follows; To use the functions, a function
identifier must be the first token on the format string. Format functions can be
combined and the results will reflect the application of the combined format
functions in the order they were listed in the format string. Format functions can not
be combined with standard format masks. The two are mutually exclusive.
Format function details:

Character Character Meaning
@ Character placeholder.

Display a character or a space. If there is a character in the string being formatted in the position where the @
appears in the format string, display it; otherwise, display a space in that position. Placeholders are filled from
right to left unless there is an ! character in the format string. See below.

& Character placeholder.
Display a character or a space. If there is a character in the string being formatted in the position where the @
appears in the format string, display it; otherwise, display a space in that position. Placeholders are filled from
right to left unless there is an ! character in the format string. See below.

< Force lowercase.
All characters are displayed in lowercase format.

> Force uppercase.
All characters are displayed in uppercase format.

! Force placeholders to fill from left to right instead of right to left.

Formatting Function Result
“* alphabetic” Displays a number as a lowercase alphabetic character. Format$(2, "* alphabetic") will result

in "b".
“* ALPHABETIC” Displays a number as an uppercase alphabetic character. Format$(2, "* ALPHABETIC") will

result in "B".
“* Caps” Capitalizes the first letter of each word. Format$("julie tanner", "* Caps") will result in "Julie

Tanner".

“* CardText” Displays a number in cardinal text. Format$(1234.56, "* CardText") will result in "one
thousand two hundred thirty five". Note that floating point numbers get rounded and
processed as integer numbers.

“$#,##0.00;($#,##0.00)” Displays a number with a currency symbol. Format$(1234.56, “$#,##0.00;($#,##0.00))” will
result in either $1,234.56 or, in the case of a negative number, ($1,234.56).

“#,##0.00;(#,##0.00)” Displays a number with a specified number of decimal places. Format$(1234.56,
“#,##0.00;(#,##0.00))” will result in either 1,234.56 or, in the case of a negative number,
(1,234.56).

“* DollarText” Displays a number in dollar text. Format$(1234.56,"* DollarText") will result in "one thousand
two hundred thirty four and 56/100".

“* FirstCap” Capitalizes the first letter of the first word. Format$("weekly report on sales.", "* FirstCap")
will result in "Weekly report on sales".

“* Hex” Displays a number in hexadecimal format. Format$(458, "* Hex") will result in "1CA".

Appendix A – Statement Syntax

450

Format functions can be combined:

“* Lower” Makes all letters lowercase. Format$("DOCUMENTATION IS FUN","* Lower") will result in
"documentation is fun".

“#,##0;(#,##0)” Displays a number as an integer. Format$(1234.56, “#,##0;(#,##0))” will result in either 1,235
or, in the case of a negative number, (1,235).
Note that floating point numbers get rounded and processed as integer numbers.

“* Ordinal” Displays a number in ordinal Arabic text. Format$(30, "* Ordinal") will result in "30th".
“* OrdText” Displays a number in ordinal text. Format$(1234.56,"* OrdText") will result in "one thousand

two hundred thirty-fifth". Note that floating point numbers get rounded and processed as
integer numbers.

“* Repeat c” Use this function for publishing footnotes denoted with a symbol instead of a number.
Format$(DCP.FOOTNOTE.NUMBER, “* Repeat *”) will result in footnote symbols of *,**,***,
and so on, as the tag’s value increases.

“* roman” Displays a number in lowercase Roman text. Format$(1234.56,"* roman") will result in
"mccxxxv". Note that floating point numbers get rounded and processed as integer numbers.

“* ROMAN” Displays a number in uppercase Roman text. Format$(1234.56,"* ROMAN") will result in
"MCCXXXV". Note that floating point numbers get rounded and processed as integer
numbers.

“* SelectChar cccc” Use this function for publishing footnotes denoted with a symbol instead of a number, where
the numeric value being formatted acts as an index to select one of the characters.
Format$(DCP.FOOTNOTE.NUMBER, “\SelectChar @#$%”) will result in footnote symbols
of @, #, $, and % as the tag’s value increases.

“* SYMBOL” Displays a single character, in either the ASCII character set on WIN32 and UNIX.
Format$(130, “*SYMBOL”) will result in “é”.
Note that tloating point numbers are rounded and processed as integer numbers. Also,
hexadecimal values are supported with the format “0xn” or “0Xn”, where the hexadecimal
number n is preceded by “0x” or “0X” (a zero followed by the letter “x” or “X”).

“* Trim” Trims spaces from both right and left of a string. Format$(" This is a test ","* Trim") will result
in "This is a test".

“* LTrim” Trims spaces from the left of a string. Format$(" This is a test ","* LTrim") will result in "This
is a test ".

“* RTrim” Trims spaces from the right of a string. Format$(" This is a test ","* RTrim") will result in "
This is a test".

“* Upper” Capitalizes all letters. Format$("docuflex rules!","* Upper") will result in "DOCUFLEX
RULES!".

Formatting Function Result

Formatting Function Result
"* Ordinal * Upper" Displays a number in upper case ordinal arabic text. For example, Format$(30, "* Ordinal *

Upper") will result in "30TH".

Sending SMTP Email Messages

451

SENDING SMTP EMAIL MESSAGES
Transall supports sending email in SMTP format. Transall supports two different
mechanisms for sending mail. One is handy when sending just a few messages,
while the other is more efficient when a larger number of items need to be sent. For
each method you need to have the following information:

1. The SMTP address of your email server. This is frequently in the form
“smtp.yourdomain.com”.

2. A valid email address for connecting to the server.

3. Optionally a port number for connecting to the server. (Most non-encrypted
SMTP servers listen to port 25, which is the default.)

When sending no more than a few messages, you may choose to use the single call
method. These routines allow you to transfer the contents of a file or string as a text
message or an HTML message, or to send a file as a text message with the file
attached. These calls are listed below:

Each of these routines, when called, will connect to the server, send the file in the
manner requested and disconnect from the server. Each returns a non-zero value if
the message was successfully transferred to the server. Each routine accepts an
optional value “HideRecipients” which may be set to a non-zero value if the
resulting email should not contain the addresses of each person receiving the mail.
 This may be desirable when transferring a file to a group of individuals who do not
want their email addresses made public.
If you are transferring many different files, then it may be advantageous to use the
second method for sending messages. In this method, a single connection to the
email server is made and kept open until all files have been delivered to the SMTP
server. Once a message has been transferred to and accepted by the server, it is the
responsibility of the server to deliver the message, even if the connection should be
dropped before it is closed by the server. When using this method, it is also possible
(if desired) to name the sender of a message as being different from the “UserID”
and to change the sender of the mail between messages. The multiple call functions
are listed below:

MailSendFile(< SendTo>, <UserID>, < SMTPServer>, <Subject>, <FileName>[[, <MessageType>][, <HideRecipients>]])
MailSendMsg(<SendTo>, <UserID>, <SMTPServer>, <Subject>, <MessageText>[[, <MessageType>,][<HideRecipients>]])
MailSendFileAsAttachment(<SendTo>, <UserID>, <SMTPServer>, <Subject>, <Message>, <FileName>[, <HideRecipients>])

MailConnect(<UserID>, <SMTPServer>[, <port>])
MailNewSender(<handle>, <Sender>)
MailFile(<handle>, <SendTo>, <Subject>, <FileName>[[, <MessageType>][, <HideRecipients>]])
MailMsg(<handle>, <SendTo>, <Subject>, <Message>[[, <MessageType>][, <HideRecipients>]])
MailFileAsAttachment(<handle>, <SendTo>, <Subject>, <Message>, <FileName>[, <HideRecipients>])
MailDisconnect(<handle>)

Appendix A – Statement Syntax

452

It is possible to send multiple emails between issuing the MailConnect() and
MailDisconnect(), and the name of the sender can optionally be set or changed at any
time by calling the MailNewSender function. Once the sender name is set, it remains
in effect for that mailer until it is changed again. By default, the sender is the same
as the UserID value. Each function returns a non-zero value if it was carried out
successfully. Whenever the MailDisconnect function is called, no more mail can be
sent on that handle until a new MailConnect command is issued to reconnect to the
server.
In addition to the functions listed above, there is one other function,
MailGetError([<handle]), that may be called without a handle to get the last error
which occurred using a single call function, or with a handle to get the last error
which occurred on that handle.
The following examples show the mail functions in use. The first three examples use
the single call method to send a file as a text message, send a file attached to a
message, and send the contents of a string as an HTML message.

Example 1: Single Call Mail Functions
|---
This example sends a text message from a file
Public Sub singleCallMailText(SendTo As String, UserID As String, SMTPServer As String)

 If (MailSendFile(SendTo, UserID, SMTPServer, “File as text”, “file.txt”) = 0) Then
 WriteConStdOut(“Mailing msg: “ & MailGetError() & _CRLF_)
 End If

End Sub

Example 2: Single Call Mail Functions
|---
This example sends a file as an attachement in a message
Public Sub singleCallMailAtch(SendTo As String, UserID As String, SMTPServer As String)

 If (MailSendFileAsAttachment(SendTo, UserID, SMTPServer, “Attachment”, _
 “See attachment”, “File.doc”) = 0) Then
 WriteConStdOut(“Mailing msg: “ & MailGetError() & _CRLF_)
 End If

End Sub

Sending SMTP Email Messages

453

Example 3: Single Call Mail Functions
|---
This example sends an HTML message
Public Sub singleCallMailHtml(SendTo As String, UserID As String, SMTPServer As String)

 If (MailSendMsg(SendTo, UserID, SMTPServer, “Msg as HTML”, _
 “Italic Bold”, TRAN_MAIL_HTML) = 0) Then
 WriteConStdOut(“Mailing msg: “ & MailGetError() & _CRLF_)
 End If

End Sub

This next example carries out a similar task, but does so using the multiple call
method. The routine below sends the contents of a file as an HTML message, sends
a file attached to a message, and sends the contents of a string as a text message.

Example 4: Single Call Mail Functions

SMTP EMAIL FUNCTIONS
You can use these functions to send SMTP email messages:

|--
This example sends an HTML message, an attachment and a text message
Public Sub multipleCallMail(SendTo As String, UserID As String, SMTPServer As String)
 Dim RC As Long
 Dim hMail As Long

 hMail = MailConnect(UserID, SMTPServer)

 If (hMail <> 0) Then
 RC = MailFile(hMail, SendTo, "File as HTML", "file.htm", TRAN_MAIL_HTML)

 If (RC <> 0) Then
 RC = MailFileAsAttachment(hMail, SendTo, "Attachment", _
 "See attachment", "File.doc")

 If (RC <> 0) Then
 RC = MailMsg(hMail, SendTo, "Text Msg", "Italic Bold")
 End If
 End If

 If (RC = 0) Then
 WriteConStdOut("Mailing error! " & MailGetError(hMail) & _CRLF_)
 End If

 MailDisconnect(hMail)
 Else
 WriteConStdOut("Mailing error! " & MailGetError() & _CRLF_)
 End If

End Sub

<Boolean integer> = MailSendFile(<String SendTo>, <String UserID>, <String SMTPServer>,
<String Subject>, <String FileName> [[,
<MessageType>][, <Long HideRecipients>])

<Boolean integer> = MailSendMsg(<String SendTo>, <String UserID>, <String SMTPServer>,
 <String Subject>, <String MessageText> [[,
 <MessageType>][, <Long HideRecipients>]])

<Boolean integer> = MailSendFileAsAttachment(<String SendTo>, <String UserID>, <String SMTPServer>,
<String Subject>, <String Message>, <String FileName>[,
<Long HideRecipients>])

Appendix A – Statement Syntax

454

This function is used to send the contents of a file as a text message. The file is not
reformatted in any manner. This function attempts to log onto the named server using
the given user ID, send the text file as a text message with the indicated subject to
the recipient(s) and disconnect from the server. If successful, a non-zero value is
returned. The various fields are described below.

This function is used to send the contents of a file as an HTML message. The file is
not reformatted in any manner. This function attempts to log onto the named server
using the given user ID, send the file as an HTML message with the indicated subject
to the recipient(s) and disconnect from the server. If successful, a non-zero value is
returned. The various fields are described below.

Field Description
SendTo This is list of one or more recipients, with each email address separated by a comma (“,”)
UserID This is a valid email address for sending email from the SMTP server.
SMTPServer This is the name of the SMTP server, for example “smtp.ourserver.com”.

Subject This is the entry for the “Subject” field of the email.
FileName This is the name of the file to be transmitted.
MessageType This indicates how the message should be displayed when it is read. Valid types are TRAN_MAIL_TEXT

and TRAN_MAIL_HTML. This defaults to TRAN_MAIL_TEXT.
HideRecipients This is an optional value. If you wish to hide the email addresses of the recipients of the mail in the

message that is sent, then set this field to a non-zero value. By default, recipient addresses are displayed.

Field Description
SendTo This is list of one or more recipients, with each email address separated by a comma (“,”)
UserID This is a valid email address for sending email from the SMTP server.
SMTPServer This is the name of the SMTP server, for example “smtp.ourserver.com”.
Subject This is the entry for the “Subject” field of the email.
MessageText This is the text of the message to be sent. It may consist of one or more lines separated by _CRLF_ and

may be either simple text or HTML.
MessageType This indicates how the message should be displayed when it is read. Valid types are TRAN_MAIL_TEXT

and TRAN_MAIL_HTML. This defaults to TRAN_MAIL_TEXT.
HideRecipients This is an optional value. If you wish to hide the email addresses of the recipients of the mail in the

message that is sent, then set this field to a non-zero value. By default, recipient addresses are displayed.

<Long Handle> = MailConnect(<String UserID>, <String SMTPServer>[, <Long port>])

MailNewSender(<Long Handle>, <String Sender>)

Sending SMTP Email Messages

455

This function is used to send a file as an attachment to a text message. The file is not
reformatted in any manner. This function attempts to log onto the named server
using the given user ID, send the file as an attachment to a text message with the
indicated subject to the recipient(s) and disconnect from the server. If successful, a
non-zero value is returned. The various fields are described below.

This function is used to start a new mail session with the SMTP server. This call
identifies the server to connect to, the userid to be used for sending mail, and
optionally a port number to connect to on the server (the default value is 25). If
successful, a non-zero value is returned. This call must be successfully made before
any mail can be sent to the server using the multiple call family of functions. The
various fields are described below.

This function sets the value to use as the sender of subsequent email messages. This
function is not required. If it is not used, the value of the “UserID” field of the
MailConnect function will be used as the sender. Once this call has been made, the
value provided will be used as the sender of all subsequent messages until either
MailNewSender is called again, or the MailDisconnect function is called.

Field Description
SendTo This is list of one or more recipients, with each email address separated by a comma (“,”)
UserID This is a valid email address for sending email from the SMTP server.
SMTPServer This is the name of the SMTP server, for example “smtp.ourserver.com”.
Subject This is the entry for the “Subject” field of the email.
FileName This is the name of the file to be transmitted.
Message This is a text message to include when a file is transferred as an attachment. It may consist of only one

line, or of many lines separated by _CRLF_.
HideRecipients This is an optional value. If you wish to hide the email addresses of the recipients of the mail in the

message that is sent, then set this field to a non-zero value. By default, recipient addresses are displayed.

Field Description
UserID This is a valid email address for sending email from the SMTP server.
SMTPServer This is the name of the SMTP server, for example “smtp.ourserver.com”.
Port This is an optional value, used to indicate the port on the SMTP server to connect to. This defaults to 25.

Field Description
Handle This is the handle returned by a prior call to MailConnect.

<Boolean integer> = MailFile(<Long Handle>, <String SendTo>, <String Subject>, <String
 FileName>[[, <MessageType>][, <Long HideRecipients>]])

<Boolean integer> = MailMsg(<Long Handle>, <String SendTo>, <String Subject>, <String
 MessageText>[[, <MessageType>][, <Long HideRecipients>]])

Appendix A – Statement Syntax

456

This function is used to send the contents of a file as a text message. The file is not
reformatted in any manner. This function attempts to send the text file as a text
message with the indicated subject to the recipient(s). If successful, a non-zero value
is returned and the mail is scheduled to be delivered by the server when the
MailConnect command is issued, or if the connection is broken. The various fields
are described below.

This function is used to send the contents of a string as a message. The message is
not reformatted in any manner. This function attempts to send the message with the
indicated subject to the recipient(s). If successful, a non-zero value is returned and
the mail is scheduled to be delivered by the server when the MailDisconnect
command is issued, or if the connection is broken. The various fields are described
below.

Sender This is the value to display as the sender of the message. It is not required to be a valid email address,
but some mail filters may flag it as SPAM if it is not.

Field Description

Field Description
Handle This is the handle returned by a prior call to MailConnect.
SendTo This is list of one or more recipients, with each email address separated by a comma (“,”)
Subject This is the entry for the “Subject” field of the email.
FileName This is the name of the file to be transmitted.
MessageType This indicates how the message should be displayed when it is read. Valid types are TRAN_MAIL_TEXT

and TRAN_MAIL_HTML. This defaults to TRAN_MAIL_TEXT.
HideRecipients This is an optional value. If you wish to hide the email addresses of the recipients of the mail in the

message that is sent, then set this field to a non-zero value. By default, recipient addresses are displayed.

Field Description
Handle This is the handle returned by a prior call to MailConnect.

<Boolean integer> = MailFileAsAttachment(<Long Handle>, <String SendTo>, <String
 Subject>, <String Message>, <String
 FileName>[, <Long HideRecipients>])

<Boolean integer> = MailDisconnect(<Long Handle>)

<Message> = MailGetError([<Long Handle>])

Sending SMTP Email Messages

457

This function is used to send the contents of a file as a file attachment to a text
message with the indicated subject to the recipient(s). The file is not reformatted in
any manner. If successful, a non-zero value is returned and the mail is scheduled to
be delivered by the server when the MailDisconnect command is issued, or if the
connection is broken. The various fields are described below.

This function tells the SMTP server to deliver all messages which were previously
transferred by one of the multiple call functions and then disconnects from the
server. Once this call has been made, no further emails can be sent on this handle
until another call to MailConnect has been issued. If successful, a non-zero value is
returned. The various fields are described below.

This function returns the text of the last error message on the given handle. If no
handle is provided, it returns the text of the last error message for one of the single
line mail functions.

SendTo This is list of one or more recipients, with each email address separated by a comma (“,”)

Subject This is the entry for the “Subject” field of the email.
FileName This is the name of the file to be transmitted.
MessageText This is the text of the message to be sent. It may consist of one or more lines separated by _CRLF_ and

may be either simple text or HTML.
MessageType This indicates how the message should be displayed when it is read. Valid types are TRAN_MAIL_TEXT

and TRAN_MAIL_HTML. This defaults to TRAN_MAIL_TEXT.
HideRecipients This is an optional value. If you wish to hide the email addresses of the recipients of the mail in the

message that is sent, then set this field to a non-zero value. By default, recipient addresses are displayed.

Field Description

Field Description
Handle This is the handle returned by a prior call to MailConnect.
SendTo This is list of one or more recipients, with each email address separated by a comma (“,”)
Subject This is the entry for the “Subject” field of the email.
Message This is a text message to include when a file is transferred as an attachment. It may consist of only one

line, or of many lines separated by _CRLF_.
FileName This is the name of the file to be transmitted.
HideRecipients This is an optional value. If you wish to hide the email addresses of the recipients of the mail in the

message that is sent, then set this field to a non-zero value. By default, recipient addresses are displayed.

Field Description
Handle This is the handle returned by a prior call to MailConnect.

Handle

Appendix A – Statement Syntax

458

Field Description
This is the handle returned by a prior call to MailConnect.

Recap Log File

459

RECAP LOG FILE

Note You should add a call to "TransLogOpen" at the start of your Transall project.
Add a call to "TransLogTransRead" so it gets called before each transaction gets
written, and add a call to "TransLogTransWrite" so it gets called after each transaction
gets written. These calls update the transaction counters for transactions read and
written. You should be sure to pass something that logically identifies a transaction to
the "TransLogTransRead" call, like an Account Number or a Client Name.
You should also add calls to "TransLogWarning" or "TransLogError" so they can report
any problems that occurred during the Transall run in the log.
Finally, you need to make a call to "TransLogClose" at the end of your Transall project
to write final transaction count numbers to the log and close the log file.

The Recap Log File is a new logging feature added to Transall to recap a Transall
project that was run.
Below is an example of a Transall project sample log:

This log was produced by this script:

Transall
Script Module: CreateAce

Transaction Error Report - System timestamp: Thu Feb 19 10:16:32 2004
Some Transaction Name: Warning!
Some Transaction Name: Error!
Electric Meter 77634: W: No reading.
Electric Meter 77634: E: Negative reading value.
==> Trans read: 2
==> Trans written: 2
==> Warning count: 2
==> Error count: 2
End of Transaction Error Report - System timestamp: Thu Feb 19 10:16:32 2004
Elapsed Time: 0 seconds

<Start>
TransLogOpen("C:\test.log", "Script Module: CreateAce")
TransLogTransRead("Some Transaction Name:")
TransLogWarning("Warning!")
TransLogError("Error!")
TransLogTransWrite()
TransLogTransRead("Electric Meter 77634:")
TransLogWarning("W: No reading.")
TransLogError("E: Negative reading value.")
TransLogTransWrite()
TransLogClose()
<End>.

Appendix A – Statement Syntax

460

LIMITATIONS
• When operating Transall on Sun Solaris, you can’t create a VRF for use with

Docuflex.

EC REGULATION 1103/97
Transall now includes enhanced script support for three internal functions that
comply with Articles 4 and 5 of EC Regulation 1103/97, which govern all manner
of currency conversion.

• CvtCurrencyToEuro(amount, exchange_rate)

• CvtCurrencyFromEuro(amount, exchange_rate,
digits_on_right_of_decimal)

• CvtCurrencyToCurrency(amount, exchange_rate_for_amount,
rate_for_new_currency, digits_on_right_of_decimal)

These functions are included for clients who either are based in Europe or have
financial dealings with Europe, and are involved in the following possible scenarios:

• You price goods and services according to your national currency, while your
customer’s Member State uses the Euro.

• Your Member State uses the Euro, while your customer uses his national
currency.

• Both you and your customer use your own national currency.

461

INDEX

Numerics
Resume, 421

A
About Docuflex Studio command, 100
Abs, 393
absolute value, 393
ActiveX automation technology, 20
adding Record subcomponents, 110
adjusting control bars and windows, 342
AIX

installation, 10
setting up the environment, 10

API (Application Program Interface), 179
Arctangent, 393
Asc, 393
ASCII, 393
Assistants in the workspace, 32
Atn, 393
Authentication Mode, 379
Auto Formatting command, 325

B
Beep, 393
Big Endian, 408
BOOTSTRP JCL, 14
breakpoints

discussed, 304
setting, 304

build settings, editing, 288
building a Transall Application for release, 308
building vs. compiling, 287
built-in component methods

discussed, 35
in Component Inspector Events tab, 34
list of, 328

C
Call, 393, 443
Call Stack window, 65
CAny, 393
Cascade command, 99
CDate, 393
CDbl, 393
ChDir, 393
ChDrive, 393
Choose, 393
Chr$, 393
CInt, 394
Class, 393, 415

ClassRefClass {GUID}, 393
Clear All Breakpoints command, 91
Clipboard

copying text to the, 51
cutting text to the, 51
pasting text from the, 51

CLng, 393
CLngLng, 394
Close, 394
Close (File) command, 46
Close (Window) command, 99
Close All command, 99
CloseDocumentSet, 394
Closing a project, 46
CNum, 394
COBOL copybooks, populating a COBOL Source
component, 112
coding a Script Declarations section, 323
Compile command, 93, 94
Compile Errors command, 64
Compile panel

discussed, 291
displaying, 291

compiling a Transall Application for debugging, 293
compiling vs. building, 287
Component

deleting, 52
Component Explorer command, 58
Component Explorer control bar, 32
Component Inspector control bar

discussed, 34
Events tab, 34
Properties tab, 34

Component Properties command, 59
components

Assistants for, 32
editing properties, 35
parts of a Transall project, 29
viewing properties, 34

condition expressions, 275
Condition instruction, 275
Conditional syntax, 440
control bars, discussed, 31
ControlBreak instruction

discussed, 276
properties of, 276
uses Identifier field of Record subcomponent, 104

control-break processing
break fields processing

discussed, 282
example of, 284

Index

462

discussed, 282
Identifier field processing

discussed, 282
example of, 283

requires Walk instruction, 282
using Identifier field of Record subcomponent, 104

Convert, 443
Copy command, 51
Cos, 394
Cosine, 394
CreateObject, 394
creating

Destination components, 106
Logic Tree components, 271
Map components, 254
Script Module components, 322
Source components, 106
Transall projects, 30

Creating a project, 45
CurDir, 394
Current directory, 393
current drive, 393, 394
Current Path, 394
Cut command, 50
CvtCurrencyFromEuro, 394
CvtCurrencyToCurrency, 394
CvtCurrencyToEuro, 394

D
data records, 103
Database, working with the Transall, 261
Datatype

DateTime, 105
Double, 105
Float, 105
Integer, 105
Long, 105
PNum, 105
String, 105
UNum, 105

Date, 395, 447
Date/Time, 397
DateAdd, 395
DateDiff, 396
DateSerial, 397
Day, 395, 396, 397
Debug

Call Stack window, 66
Variables Window, 65
Watch Window, 65

Debug menu
Clear All Breakpoints, 91
contents, 83, 89
Demand Break, 90

External Runtime Error, 92
Go, 89
Run to Cursor, 91
Start, 89
Step Into, 90
Step Over, 90
Stop, 89
Toggle Breakpoint, 91

Debug toolbar, 67
debugging

compile settings for, 303
operating in debug mode, 303
preparing Transall Application for, 297
stepping through a debug session, 305
viewing Transall Script variables, 306

debugging and deploying Transall Applications
compiling the project, 303
compiling versus building, 287
deploying, 308
discussed, 287
specifying debug settings, 295

Declarations section
coding, 323
in Script Modules, 321

Declare Function, 397
Declare Sub, 398
Deebug menu

Break, 90
Define Set, 399
Define Table, 400
DefineEvent, 400
Delete command, 52
DeleteAllRows, 400
DeleteRow, 400
DeleteSetting, 400
Deleting

a component, 52
deleting

Record subcomponents, 111
script from a Script Module, 326

Demand Break command, 90
Destinations

creating, 106
discussed, 101
exporting text files, 101
file-based, 102
ODBC-based, 159
scripted data, 203
SQL properties reference, 144
traditional files properties reference, 129

DF$GetFirstRow, 400
DF$GetLastRow, 400
DF$GetNextRow, 400
DF$GetPathmapValue, 401

Index

463

DF$GetPriorRow, 401
DF$GetRowCount, 401
DF$GetRowNumber, 401
DF$GetTagValue, 401
DF$IsRowFirst, 401
DF$IsRowLast, 401
DF$IsRowMiddle, 401
DF$IsTableEmpty, 401
DF$SetCurrentRow, 401
DF$SetTagValue, 401
DF$SortTable, 401
DF$Walk, 401
Dictionaries

displaying, 95, 96, 97
Dim, 401
Dir$, 402
Displaying

Control bars
Component Explorer, 58
Component Properties, 60
Output, 61
Styles, 62, 63

panes
Compile Errors, 65

Toolbars
Data, 66, 67, 68, 69

DMG Report, 86
Do, 406
Do Walk, 406
Do While, 406
docking control bars and toolbars, 37
Docuflex Destination

data movement, 173
Data Schema, 172
DataSets, 173
discussed, 171
Docuflex Assistant, 171
ROOT record node, 172
setting up, 171

Docuflex Studio Help command, 100
Documaker Forms Publishing (FP), 179
Documaker FP Plus (VRF) destination, 81
Documanage

sharing projects, 48, 334
Document menu

contents, 69, 75
DoWhile instruction, 277
DynmGetTableValue, 407

E
EBCDIC, 408
EC Regulation 1103/97, 460
Edit menu

contents, 50

Copy, 51
Cut, 50
Delete, 52
Find, 52
Find in Project, 54
Paste, 51
Redo, 50
Replace, 53
Replace in Project, 57
Select All, 52
Undo, 50

editing
component properties, 34
Record field descriptions, 110
scripts in a Script Module, 326

EDL
Electronic Document Library, 190
setting the effective date for forms, 434

Else
conditional assignment, 441
conditional processing, 440

ElseIf
conditional assignment, 441
conditional processing, 440

email messages, 453
End Function, 407
End SendEvent, 407
Enum, 407
Environ, 407
Environ$, 407
Err, 407
Err.Description, 407
Error code As Integer, 434
Even, 408
Event-based XML Source

how parsing works, 219
overview, 219
setting up, 219

Events tab (Component Inspector), 34
examples

FpAddTag, 202
FpComment, 187
FpDataGroup, 202
FpDataHeader, 202
FpFooter, 200
FpHeader, 199
FpKeepOnSamePage, 201
FpPageBreak, 201
New Form with Tags, 195
New Form without Tags, 198

Execute instruction, 278
executing

Logic Tree components, 270
Map components, 260

Index

464

Exit command, 49
Exit Do, 408
Exit Function, 408
Exit Sub, 408
Exiting the Editor, 49
Exp, 408
exporting text files, 101
Expression Builder dialog, 258
expression syntax, 443
Extraneous Properties, 55

F
fields, subcomponents of records, 103
file attribute, 402
file exporting, 101
File Menu

Share, 48
File menu

Close, 46
contents, 43, 44
Exit, 49
Make project, 49
New, 45
Save, 46
Save As, 47
Share, 48

file, Recap Log, 459
FileBitsAreAscii, 408
FileBitsAreDefault, 408
FileBitsAreEbcdic, 408
FileConcat, 408
FileCopy, 408
files produced from building or compiling, 288
FileValuesAreBigEndian, 408
FileValuesAreDefaultEndian, 408
FileValuesAreLittleEndian, 408
filter criteria in SQL tables of Query
subcomponents, 154
Find command, 52
Find control bar, 326
FindRowSet, 408
FindRowTbl, 408
Fix, 408
Flat File data source, 77
floating control bars and toolbars, 37
For To, 409
Form Editor dialog, 194
Form Select dialog

create a new form, 192
Find feature, 191

format options
discussed, 105

Format$, 409
formatting syntax

Date separator, 445
Decimal placeholder, 445
Digit placeholder, 445
discussed, 445
display a literal character, 446
display the next character in the format string, 446
display the string inside the double quotation

marks, 446
Percentage placeholder, 445
Thousand separator, 445
Time separator, 445

Forms Publication Plus (Fp Plus), 179
FP Plus Destination

built-in features
Headers and Footers, 179
Keep, 179
Overflow, 180
Page Counting, 180
Word Wrap, 179

business logic
FpAddTag, 181
FpComment, 182
FpDataGroup, 182
FpDataHeader, 182
FpForm, 181
FpHeader and FpFooter, 182
FpKeepOnSamePage, 182
FpLayout, 181
FpPageBreak, 182

destination properties, 184
Documaker FP File, 179
Documaker FP Plus, 179
Logic Tree

business rules, 181
data extract, 181

overview, 179
record hierarchy feature, 180
record properties, 186
special Transall LogicTree, 181

Fp$PageDotCount, 409
Fp$PageNumber, 410
Fp$PlusGetRfrmtHandle, 410
Fp$SectionPageNumber, 410
Fp$TotalPages, 410
Fp$TotalSectionPages, 410
FreeFile, 410
Function, 410
functions, in Scripts, 321

G
Gallery view (PG Chart Types)

discussed, 74, 87
General panel

discussed, 290

Index

465

displaying, 290
General view (PG Chart Options)

discussed, 83, 84
GetColSumSet, 411
GetColSumTbl, 411
GetObject, 411
GetRow Set, 412
GetRow Table, 412
GetRowCountSet, 412
GetRowCountTbl, 412
GetRowNumberSet, 412
GetRowNumberTbl, 412
GetSetting, 412
GetVal, 412
GoSub, 413
GoTo, 412

H
Help menu

About Docuflex Studio, 100
Docuflex Studio Help, 100

Hex$, 413
Hour, 395, 396, 413

I
Identifier fields of Record subcomponent, 104
If, 440
IidGuid, 413
importing COBOL copybooks into COBOL Source
components, 112
Input instruction, 278
InsertRow

Global, 413
Local, 413

Installing Transall
MVS

discussed, 13
Step 1, 14
Step 2, 15

UNIX
copying files, 10
running the install script, 11
setup, 10

WIN32
discussed, 5
steps for installing, 5

Instr, 414
InstrRev, 414
instructions, next sibling instruction in LogicTree, 273
Int, 408, 414
Interface Global Unique ID (GUID), 413
IsDate, 414
IsNull, 414

IsNumeric, 414
IsSetCurrent, 414
IsSetEmpty, 414
IsTableCurrent, 414
IsTableEmpty, 414

J
Java Database Connectivity (JDBC)

Details for accessing databases, 167
integrating access to data, 21

JDBC see Java Database Connectivity (JDBC)
Join, 414
join criteria in SQL tables of Query subcomponents, 152

K
Kill, 414

L
LCase$, 415
Left$, 415
Len, 415, 419, 420
length of string, 415
Let, 415
LibGUID, 415
Like conditional operator syntax, 441
Links

command, 83
Linux

installation, 10
setting up the environment, 10

Little Endian, 408
Locale panel (Document>Settings)

displaying, 302
specifying custom formatting symbols, 303
specifying dynamic formatting symbols, 303
specifying the regional language, 302

Log, 415
Logarithm, 415
Logic Tree components

creating, 271
defined, 25
executing, 270
instructions

adding, 272
cloning, 273
ControlBreak, 276
deleting, 273
discussed, 269
DoWhile, 277
enabling and disabling, 274
Execute, 278
for Documaker use, 281
for standard use, 274

Index

466

Input, 278
Map, 278
Output, 279
reordering, 273
using Transall Script variables in, 286
Walk, 279

overview, 269
starting application execution, 281

Long Long, 394
LookupValSet, 415
LookupValTbl, 415
Lowercase, 415, 448
LTrim$, 415

M
managing Transall Applications

”how-to” tips
create a project, 337
discussed, 337

Map instruction in Logic Tree, 278
mapping data types between ODBC source and Transall
fields, 170
Maps

Map Assistant
Expression Builder, 258
Resource Bar, 257

Map components
creating, 254
explained, 251
for each Record or Query in Destination, 251
Map Assistant, 255
performing, 260

menu bar, 31
Method, 427
Mid$, 415
Millisecond, 416
Minute, 395, 396, 416
MkDir, 416
Month, 395, 396, 416
MVS, installing Transall for, 13

N
Name As, 416
naming a project, 30
New command, 45
next sibling instruction, 273
noncomponent Tables, 323
Now, 416
NULL, 416

O
Oct, 416
ODBC see Open Database Connectivity (ODBC)

OdbcCommit, 416
OdbcConnect, 416
OdbcConnectCsr, 416
OdbcDiscconect, 416
OdbcDriverConnect, 416
OdbcDriverConnectCsr, 416
OdbcDriverConnectPrompt, 416
OdbcDriverConnectPromptCsr, 417
OdbcExecute, 417
OdbcExecuteDirect, 417
OdbcExecuteDynam, 417
OdbcFetch, 417
OdbcGetConnectionOptionLong, 417
OdbcGetConnectionOptionString, 417
OdbcGetErrorInfo, 417
OdbcGetSqlRowCount, 417
OdbcGetStmtOptionLong, 417
OdbcGetStmtOptionString, 417
OdbcMoreResults, 417
OdbcPrepare, 417
OdbcPrepareDynam, 417
OdbcRollback, 417
OdbcRun, 417
OdbcSetConnectionOptionLong, 418
OdbcSetConnectionOptionString, 418
OdbcSetConOptAutoCommit, 418
OdbcSetConOptIsoReadCommited, 418
OdbcSetConOptIsoReadRepeatable, 418
OdbcSetConOptIsoReadUncommited, 418
OdbcSetConOptIsoSerializable, 418
OdbcSetConOptReadOnly, 418
OdbcSetConOptTrace, 418
OdbcSetConOptTraceFile, 418
OdbcSetPrepareOpt, 418
OdbcSetPrepareOptGlobal, 418
OdbcSetStmtOptionLong, 418
OdbcSetStmtOptionString, 418
OdbcStatementCloseResult, 419
OdbcStatementDrop, 419
Odd, 419
On Error

GoTo, 419
Goto 0, 419
Resume Next, 419

Open, 410, 419
Open Database Connectivity (ODBC)

integrating access to data, 21
mapping data types to Transall fields, 170

Opening an existing project, 45
Output instruction, 279
Overflow Definitions

adding, 70

Index

467

P
Paste command, 51
performing Map components, 260, 278
PG charts

Chart Options dialog
General view, 83, 84

Chart Types dialog
Gallery view, 74, 87

PPS, 421
PpsExpReadNextHdr$, 420
PpsExpReadVarData, 421
production definition, 434
Project

closing, 46
creating, 45
debugging

Clear All Breakpoints, 91
Demand Break, 90
Start, 89
Step Into, 90
Step Over, 90
Stop, 89

exiting the Editor, 49
opening, 45
saving, 45, 46
saving as..., 45, 47
setting options, 289

Project menu
Add Destination, 70
Add LogicTree, 72
Add Map, 71
Add Script Module, 74
Add Source, 69
Compile, 87
Next Error, 87
Previous Error, 87
Project Settings, 87, 289
Synchronize, 83
Wizards, 75

Project Settings
displaying, 289
saving, 290
using tabs

Compile, 291
discussed, 289
General, 290
Register, 294

Project Settings command, 289
Project Settings dialog

Debug settings, 295
project sharing

discussed, 333
project sharing details

discussed, 333

Links menu item, 335
Share menu item, 48, 333
Synchronize menu item, 334

projects
creating, 30
default components, 31
naming, 30
organizing related Transall components, 29

Properties tab
in Component Inspector pane, 34

PSSaveAsDCD, 421

Q
Quarter, 395, 396
Query subcomponents

creating, 146
defining SQL filter criteria for, 154
defining SQL join criteria for, 152
defining SQL sort criteria for, 155
for ODBC-based Sources and Destinations, 146
identifying SQL tables and columns, 147
properties for ODBC Sources, 160
properties for ODBC-based Sources, 147
selecting columns from selected SQL tables, 150
selecting SQL tables for, 149

R
Raise GeneralFailure, 421
RaiseEvent, 421
Randomize, 421
Random-Number, 421, 422
ReadFixed, 421
ReadPrivateProfileRemove, 421
ReadPrivateProfileRemoveAll, 421
ReadPrivateProfileSection, 421
ReadPrivateProfileSetCacheSize, 421
ReadPrivateProfileString, 421
ReadVariable, 421
rearranging control bars and toolbars, 37
Recap Log file, 459
Record subcomponents

copying field descriptions, 111
defining the Identifier field of, 104
deleting, 111
in Sources and Destinations, 103
overview, 22

Redo command, 50
Register panel

discussed, 294
displaying, 294, 296

registering Transall Application as ActiveX server, 295
renaming Transall components globally, 40
Repeating your actions, 50

Index

468

Replace command, 53
Replace$, 421
Resource control bar, 257
Resume Next, 421
Return, 421
Reversing your actions, 50
Right$, 421
RmDir, 422
Rnd, 422
Round, 423
Round45, 423
Round45A, 423
RTrim$, 423
Rulebase, 434
running a Transall Application in debug mode, 303

S
Save As command, 47
Save command, 46
SaveSetting, 423
Saving a project

saving, 45, 46
saving as a template, 45, 47
saving with a different name, 45, 47

Script Module components
adding a script, 324
creating, 322
Declarations section, 321
deleting a script from, 326
discussed, 321
editing a script, 326
setting a breakpoint in, 304
viewing list of scripts in, 327

Scripted Destination
destination properties, 206
operations (events), 206
overview, 203
Scripted Assistant, 203
source properties, 206

scripts
adding to Script Module component, 324
automatic formatting of syntax, 325
discussed, 321
editing, 326
functions, 321
removing from a Script Module component, 326
subroutines, 321
viewing in a Script Module component, 327

Second, 395, 396, 423
Seek, 423
Select All command, 52
SendEvent, 424
SendEvent GeneralFailure To, 424
separator options, 106

Set, 399
Set components

creating, 264
describing relationship between Tables, 24
discussed, 263
establishing a parent-child relationship between

Tables, 265
properties reference, 267

SetAttr, 424
SetNull, 424
Setting up the UNIX environment, 10
Settings

using tabs
Compile, 291
Debug, 295
General, 290
Locale, 302
Register, 294

Sgn, 425
Share, 48
Shell, 425
Sin, 425
Sine, 425
SMTP email messages, 453
sort criteria in SQL tables of Query subcomponents, 155
SortSet, 425
SortTable, 425
SortTableMulti, 425
Source components

COBOL file, describing, 112
creating, 106
delimited file (ASCII), describing, 112
discussed, 101
Event-based XML, 219
exporting text files, 101
file-based, 102
fixed file, describing, 110
FormMaker file (PPS), describing, 115
ODBC-based, describing, 145
properties reference

ODBC-based Sources, 142
traditional Sources, 116

scripted data, 203
source control with Transall files, 288
Space, 425
SQL see Structured Query Language (SQL)
Sqr, 425
square root, 425
standard error, 431
standard output, 432
Standard toolbar, 66
Start command, 89
statement syntax, 393
Static As, 426

Index

469

status bar, 31
Stop command, 89
StrComp, 426
String$, 426
StrReverse, 426
Structured Query Language (SQL)

bind variables, 161
MVS

Running Transall with DB2, 162
Processing statements on non-WIN32

platforms, 161
queries, 145
statements, 145
UNIX

Building the Transall Executable, 167
Creating DSN files, 162
Creating DSN files for the PC, 166
Details for accessing databases, 162
Details for accessing databases via JDBC, 167
Linux ODBC support, 165
Transferring the Transall executable, 167

Sub, 427
subroutines, 321
Sun

installation, 10
setting up the environment, 10

Switch, 428
Synchorinze

DMG Report, 86
Synchorinze menu

View Queries, 85
Synchornize menu

View Links, 84
Synchronize menu

Data Sources, 83
Links, 83

system requirements
AIX, 2
Linux, 3
MVS, 1
Sun Solaris, 3
Windows, 1

T
Table components

describing data, 24
discussed, 261
establishing relationships with Sets, 264
properties reference, 267
resource considerations for, 262

Tag Editor
creating a new tag, 194

Tan, 428
TAPEREAD JCL, 15

TDMJOBS, 377
TDMTERM, 378
TDMWAIT, 377
Text

finding, 52, 54, 57
replacing, 53
selecting all, 52

Then, 440
Threaded Data Manager

components, 369
connecting Transall and Docuflex

advanced example, 373
batch command script, 375
command-line reference, 376
discussed, 373

examples, 371
overview, 369
setting up Transall projects, 382

Time, 428
Time Format, 445, 448
TimeSerial, 428
Toggle Breakpoint command, 91
tool bars, 31
Toolbars menu

Customize dialog box, 67
Customize>Commands tab, 67

Tools menu
Compile, 93, 94
contents, 93, 94
Options, 93

TRANDMAN, 376, 379
Transall

compiling projects, 293
overview, 17
tools included in the product package, 26

Transall “how-to”
add a record type to a delimited source or

destination, 362
add an SQL query to a source or destination, 349
discussed, 337
one SQL statement references the results of

another, 355
open and existing project, 340
set up a delimited data source, 356
set up an SQL source or destination, 344
why there are multiple records for some sources or

destinations, 362
Transall Application

build settings for, 288
building for release, 308
building vs. compiling, 287
characteristics, 20
compiling vs. building, 287
components, 21

Index

470

data paths, 20
files produced when compiling or building, 288
handling technologies

ActiveX Automation, 20
Open Database Connectivity (ODBC), 20
Win32, 20

operating while debugging, 305
preparing for debugging, 297
registering as ActiveX server, 295

Transall Applications, 17
Transall Compiler, 26
Transall Database, 261
Transall Editor

component Assistants, 32
Component Explorer, 32
Component Inspector, 34
defined, 26
Find control bar, 326
hiding control bars, 37
menu bar, 31
other control bars and windows, 39
part of the Transall Application, 21
rearranging bars and tool bars, 37
revealing bars, 37
status bar, 31
tool bar, 31
workspace area, 39

Transall executable, 26
Transall gateway

accessing files with Tranexe, 389
Transall Host

associating with .TEX file, 295
included in Transall product package, 26

Transall Java scripting support
calling a Java application, 244
discussed, 243
get and set Java object field values, 248
Java object data types, 246
Java vs. Transall data types, 244
overview, 243
running Java applications located in JAR files, 248
running Java class applications, 247
syntax overview, 243
Transall Java support syntax details, 249

Transall Script language
expressions, 259
using variables in Logic Tree instructions, 286

Transall Scripts, noncomponent Tables in, 323
Transall UNIX

copying files, 10
running the install script, 11
setting up the environment, 10

TransAllBeginTrans, 428
TransAllEndTrans, 428

TransAllRollbackTrans, 428
Trim$, 428
TrnSys$LocaleDefCurrencySym, 429
TrnSys$LocaleDefDateSym, 429
TrnSys$LocaleDefDecimalSym, 429
TrnSys$LocaleDefDigitGroupSym, 429
TrnSys$LocaleDefNegativeSym, 429
TrnSys$LocaleDefTimeAmSym, 429
TrnSys$LocaleDefTimePmSym, 429
TrnSys$LocaleDefTimeSym, 429
TrnSys$LocaleSetCurrencySym, 429
TrnSys$LocaleSetDateSym, 429
TrnSys$LocaleSetDecimalSym, 429
TrnSys$LocaleSetDigitGroupSym, 429
TrnSys$LocaleSetNegativeSym, 429
TrnSys$LocaleSetTimeAmSym, 429
TrnSys$LocaleSetTimePmSym, 429
TrnSys$LocaleSetTimeSym, 429
True, 430
Type Statement, 430

U
UBound, 430
UCase$, 432
UpdateRow, 432
Uppercase, 432, 448
User Layouts

discussed, 64
selecting, 64

User Layouts command, 64
Using the Tools>Options Dialog Box

Documanage Tab, 97
Editor Tab, 94
Formats Tab, 95
Separators Tab, 96

V
Val, 433
variable assignment, 443
Variables Window, 65
VDR (Varible Data Reformater), 179
VdrAddExplicitForm, 433
VdrAddFormsLibrary, 433
VdrAddTag, 433
VdrBeginReformatter, 433
VdrBuildMergeSet, 433
VdrCallDmgrfmtOn370, 433
VdrCallMrgUserOnWin32, 433
VdrCloseVRF, 433
VdrCloseVRFs, 433
VdrDmgrfmtGetReasonCode, 433
VdrDmgrfmtGetReturnCode, 433
VdrDmgrfmtSetAllowMissingRulebase, 433

Index

471

VdrDmgrfmtSetAlternateParmList, 433
VdrDmgrfmtSetEndMergeSet, 434
VdrDmgrfmtSetMaxMessageLevel, 434
VdrDmgrfmtSetNoEffDateMsg, 434
VdrDmgrfmtSetSuppressImplictForms, 434
VdrDmgrfmtSetSuppressSysPrint, 434
VdrDmgrfmtSetVrfAllocDDname, 434
VdrDmgrfmtSetWriteExplictForms, 434
VdrDmgrfmtSetWriteRfcb, 434
VdrEndMergeSet, 434
VdrEndReformatter, 434
VdrSetEffectiveDate, 434
VdrSetJobDescription, 434
VdrSetMessageFile, 434
VdrSetProductionDefinition, 434
VdrSetRulebase, 434
VdrSetVRFFile, 434
VdrSetWorkDirectory, 434
VdrStartMergeSet, 434
VdrSubmit, 434
VERSION, 430
View menu

Breakpoints, 66
Compile Errors, 64
Component Explorer, 58
Component Inspector, 59
Component Properties, 59
contents, 58
Debug, 64
Logic Bar, 62
Output Bar, 61
Resource Bar, 63
SQL Bar, 64
Toolbars, 66
Toolbars>Customize>Toolbars tab, 68
User Layouts, 64

viewing
scripts in a Script Module component, 327
Transall Script variables during debugging, 306
values of component properties, 34

VSAM
Append, 419
Append Random, 419
Input, 419
Output, 420
Output Random, 420
Random, 419

VsamDelete, 435
VsamInsert, 435
VsamRead, 435
VsamReadPrior, 435
VsamReplace, 436
VsamSearch, 436
VsamSearchBack, 436

VsamSearchBackExact, 436
VsamSearchExact, 436

W
Walk instruction

defined, 279
required for control-break processing, 282

Watch Window, 65
Week, 395, 396
Weekday, 395, 396, 430
While, 431
WIN32, installing Transall for, 5
Window menu

Arrange Icons, 99
Cascade, 99
Close, 99
Close All, 99
contents, 98
New Window, 98
Tile, 99

With, 431
Wizards

Documaker FP Plus (VRF) Destination to XML
Plus Destination, 81

Flat File Wizard, 77
Import Table Layout, 78
XML Plus Source to Docuflex, 76

Working with Maps, 251
Working with the Transall Database

overview, 261
Sets, 263
Tables, 261

Working with Transall Scripts and Script Modules
built-in component methods, 328
overview, 321

workspace area, 39
WriteConStdErr, 431
WriteConStdOut, 431
WriteFixed, 432
WriteVariable, 432
WriteXmlDocumentSet, 432

X
XML Destination

adding a Record, 234
setting up, 231

XML Plus data source, 76
XML Plus Destination, 81
XML Plus Source

adding records and fields, 209
component property details

field, 216
record, 216

Index

472

source, 214, 216
XML vs. XML Plus, 213

element IdentifierValue properties, 210
features, 207
field usage, 211
overview, 207
transaction boundaries, 212
using with the Logic Tree, 212

XML Source, adding a Record, 224
XmlClose, 436
XmlDeclareColAttribute, 436
XmlDeclareColCDATA, 436
XmlDeclareColComment, 436
XmlDeclareColProcInstr, 436
XmlDeclareColStringData, 436
XmlDeclareTableElement, 436
XmlEncodingTranscode, 437
XmlGetDeclaration, 437
XmlGetDTD, 437
XmlGetElementData, 437
XmlGetNextElement, 437
XmlOpen, 439
XmlSetEncoding, 439
XmlWriteWhiteSpace, 439

Y
Year, 395, 396, 436

	Start
	Contents
	Chapter 1 - System Requirement
	Windows (32-bit)
	AIX (32-bit)
	IBM System z Linux (64-bit)
	Linux (32-bit)
	Sun Solaris (32-bit)

	Chapter 2 - Installing Transall
	Installation
	Setting Up the Environment

	Chapter 3 - Transall Overview
	Transall Applications
	Components of a Transall Application
	About the Transall Editor

	Chapter 4 - Interacting with Transall Editor
	Transall Projects

	Chapter 5 - Transall Editor Menu Options
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	Chapter 6 - Working with Sources and Destinations
	Creating Sources and Destinations
	Reference for Component Properties - Traditional Files
	Reference for Component Properties - SQL

	Chapter 7 - Docuflex Destination
	Overview

	Chapter 8 - FP Plus Destination
	Overview

	Chapter 9 - Scripted Data Sources and Destinations
	Overview
	Scripted Assistant

	Chapter 10 - XML Plus Data Source
	Overview
	XML Plus Features
	XML Plus Source Component Property Details

	Chapter 11 - Event-based XML Data Source
	Overview of Event-based XML Support
	How Event-based XML Parsing works in Transall

	Chapter 12 - XML Data Destinations
	Setting up an XML Destination

	Chapter 13 - Using Unicode
	Chapter 14 - Transall Java Scripting Support
	Overview

	Chapter 15 - Working with Maps
	Overview
	Maps and Records

	Chapter 16 - Working with the Transall Database
	Overview
	Tables
	Sets

	Chapter 17 - Working with Logic Trees
	Overview
	How a Logic Tree Works
	Logic Tree Instructions
	Documaker fp Instructions
	Starting Application Execution in a Logic Tree
	Setting Up Control-Break Processing
	Example of Identifier Field Control-Break Processing
	Example of Break Fields Control-Break Processing
	Using Variables in Logic Tree Instructions

	Chapter 18 - Debugging and Deploying Transall Applications
	Overview
	Compiling Versus Building
	Files Produced when Compiling a Transall Application
	Using Source Control with Transall Files
	Editing Build Settings
	Running a Transall Application in Debug Mode
	Building a Transall Application for Release
	Deploying Transall Applications

	Chapter 19 - Working with Transall Scripts and Script Modules
	Overview
	Creating a Script Module
	Built-In Component Methods

	Chapter 20 - Project Sharing
	Overview

	Chapter 21 - Managing Transall Applications
	Transall How To’s:

	Chapter 22 - Transall Threaded Data Manager
	Introduction
	Components
	Examples
	Connecting Transall and Docuflex to the TDM
	Setting up Transall Projects to use the TDM

	Chapter 23 - Transall Gateway
	Appendix A - Statement Syntax
	Conditional Syntax
	Expression Syntax
	Formatting Syntax
	Sending SMTP Email Messages
	Recap Log File
	Limitations
	EC Regulation 1103/97

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

